A First Course Of Homological Algebra

Author: D. G. Northcott
Publisher: CUP Archive
ISBN: 9780521201964
Size: 46.70 MB
Format: PDF, ePub, Docs
View: 4988
Download Read Online
Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.

A Course In Homological Algebra

Author: P.J. Hilton
Publisher: Springer Science & Business Media
ISBN: 146849936X
Size: 50.21 MB
Format: PDF, Kindle
View: 1994
Download Read Online
In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

Algebraic Topology

Author: William Fulton
Publisher: Springer Science & Business Media
ISBN: 1461241804
Size: 54.49 MB
Format: PDF, Kindle
View: 904
Download Read Online
To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the re lations of these ideas with other areas of mathematics. Rather than choosing one point of view of modem topology (homotopy theory, simplicial complexes, singular theory, axiomatic homology, differ ential topology, etc.), we concentrate our attention on concrete prob lems in low dimensions, introducing only as much algebraic machin ery as necessary for the problems we meet. This makes it possible to see a wider variety of important features of the subject than is usual in a beginning text. The book is designed for students of mathematics or science who are not aiming to become practicing algebraic topol ogists-without, we hope, discouraging budding topologists. We also feel that this approach is in better harmony with the historical devel opment of the subject. What would we like a student to know after a first course in to pology (assuming we reject the answer: half of what one would like the student to know after a second course in topology)? Our answers to this have guided the choice of material, which includes: under standing the relation between homology and integration, first on plane domains, later on Riemann surfaces and in higher dimensions; wind ing numbers and degrees of mappings, fixed-point theorems; appli cations such as the Jordan curve theorem, invariance of domain; in dices of vector fields and Euler characteristics; fundamental groups

An Elementary Approach To Homological Algebra

Author: L.R. Vermani
Publisher: CRC Press
ISBN: 0203484088
Size: 12.20 MB
Format: PDF, ePub, Docs
View: 6451
Download Read Online
Homological algebra was developed as an area of study almost 50 years ago, and many books on the subject exist. However, few, if any, of these books are written at a level appropriate for students approaching the subject for the first time. An Elementary Approach to Homological Algebra fills that void. Designed to meet the needs of beginning graduate students, it presents the material in a clear, easy-to-understand manner. Complete, detailed proofs make the material easy to follow, numerous worked examples help readers understand the concepts, and an abundance of exercises test and solidify their understanding. Often perceived as dry and abstract, homological algebra nonetheless has important applications in many important areas. The author highlights some of these, particularly several related to group theoretic problems, in the concluding chapter. Beyond making classical homological algebra accessible to students, the author's level of detail, while not exhaustive, also makes the book useful for self-study and as a reference for researchers.

Methods Of Homological Algebra

Author: Sergei I. Gelfand
Publisher: Springer Science & Business Media
ISBN: 3662124920
Size: 27.91 MB
Format: PDF, Mobi
View: 6887
Download Read Online
This modern approach to homological algebra by two leading writers in the field is based on the systematic use of the language and ideas of derived categories and derived functors. It describes relations with standard cohomology theory and provides complete proofs. Coverage also presents basic concepts and results of homotopical algebra. This second edition contains numerous corrections.

Commutative Algebra

Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 1461253500
Size: 44.23 MB
Format: PDF
View: 194
Download Read Online
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Relative Homological Algebra

Author: Edgar E. Enochs
Publisher: Walter de Gruyter
ISBN: 3110215217
Size: 71.85 MB
Format: PDF, Docs
View: 6119
Download Read Online
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. The book is also suitable for an introductory course in commutative and ordinary homological algebra.

Representation Theory

Author: Alexander Zimmermann
Publisher: Springer
ISBN: 3319079689
Size: 48.34 MB
Format: PDF, ePub, Mobi
View: 1240
Download Read Online
Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.

Rings And Homology

Author: James P. Jans
Publisher: Courier Dover Publications
ISBN: 0486801896
Size: 49.41 MB
Format: PDF, Mobi
View: 393
Download Read Online
This concise text is geared toward students of mathematics who have completed a basic college course in algebra. Combining material on ring structure and homological algebra, the treatment offers advanced undergraduate and graduate students practice in the techniques of both areas. After a brief review of basic concepts, the text proceeds to an examination of ring structure, with particular attention to the structure of semisimple rings with minimum condition. Subsequent chapters develop certain elementary homological theories, introducing the functor Ext and exploring the various projective dimensions, global dimension, and duality theory. Each chapter concludes with a set of exercises.