Applied Stochastic Modelling Second Edition

Author: Byron J.T. Morgan
Publisher: CRC Press
ISBN: 1420011650
Size: 43.41 MB
Format: PDF, Mobi
View: 7428
Download Read Online
Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and improved figures, this edition offers numerous updates throughout. New to the Second Edition An extended discussion on Bayesian methods A large number of new exercises A new appendix on computational methods The book covers both contemporary and classical aspects of statistics, including survival analysis, Kernel density estimation, Markov chain Monte Carlo, hypothesis testing, regression, bootstrap, and generalised linear models. Although the book can be used without reference to computational programs, the author provides the option of using powerful computational tools for stochastic modelling. All of the data sets and MATLAB® and R programs found in the text as well as lecture slides and other ancillary material are available for download at www.crcpress.com Continuing in the bestselling tradition of its predecessor, this textbook remains an excellent resource for teaching students how to fit stochastic models to data.

Modeling And Analysis Of Stochastic Systems

Author: Vidyadhar G. Kulkarni
Publisher: CRC Press
ISBN: 9780412049910
Size: 18.31 MB
Format: PDF, Kindle
View: 4409
Download Read Online
This practical text aims to enable students in engineering, business, operations research, public policy, and computer science to model and analyze stochastic systems. The major classes of useful stochastic processes - discrete and continuous time Markov chains, renewal processes, regenerative processes, and Markov regenerative processes - are presented, with an emphasis on modelling real-life situations with stochastic elements and analyzing the resulting stochastic model.

Stochastic Processes

Author: Peter Watts Jones
Publisher: Oxford University Press
ISBN: 9780340806548
Size: 48.76 MB
Format: PDF, Mobi
View: 3487
Download Read Online
In this textbook the authors present an accessible introduction to stochastic processes for students in courses that have substantial mathematics or statistics content. It assumes that students have completed the usual first-year methods courses in calculus, differential equations and linear algebra, as well as an introductory course in probability. The book covers random walks, Markov chains, birth and death processes, queues, reliability, and renewal and branching processes.

Stochastic Modelling For Systems Biology Second Edition

Author: Darren J. Wilkinson
Publisher: CRC Press
ISBN: 1439837724
Size: 20.75 MB
Format: PDF, Docs
View: 5714
Download Read Online
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.

Markov Chain Monte Carlo

Author: Dani Gamerman
Publisher: CRC Press
ISBN: 9781584885870
Size: 48.14 MB
Format: PDF, ePub, Mobi
View: 6992
Download Read Online
While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration. Major changes from the previous edition: · More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms · Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection · Discussion of computation using both R and WinBUGS · Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web · Sections on spatial models and model adequacy The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses.

Stationary Stochastic Processes

Author: Georg Lindgren
Publisher: CRC Press
ISBN: 1466557796
Size: 11.15 MB
Format: PDF, ePub
View: 2418
Download Read Online
Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.

Stochastic Processes With Applications To Finance

Author: Masaaki Kijima
Publisher: CRC Press
ISBN: 9781584882244
Size: 18.63 MB
Format: PDF, ePub
View: 440
Download Read Online
In recent years, modeling financial uncertainty using stochastic processes has become increasingly important, but it is commonly perceived as requiring a deep mathematical background. Stochastic Processes with Applications to Finance shows that this is not necessarily so. It presents the theory of discrete stochastic processes and their applications in finance in an accessible treatment that strikes a balance between the abstract and the practical. Using an approach that views sophisticated stochastic calculus as based on a simple class of discrete processes-"random walks"-the author first provides an elementary introduction to the relevant areas of real analysis and probability. He then uses random walks to explain the change of measure formula, the reflection principle, and the Kolmogorov backward equation. The Black-Scholes formula is derived as a limit of binomial model, and applications to the pricing of derivative securities are presented. Another primary focus of the book is the pricing of corporate bonds and credit derivatives, which the author explains in terms of discrete default models. By presenting important results in discrete processes and showing how to transfer those results to their continuous counterparts, Stochastic Processes with Applications to Finance imparts an intuitive and practical understanding of the subject. This unique treatment is ideal both as a text for a graduate-level class and as a reference for researchers and practitioners in financial engineering, operations research, and mathematical and statistical finance.

Stochastic Processes

Author: Pierre Del Moral
Publisher: CRC Press
ISBN: 1498701841
Size: 16.44 MB
Format: PDF, Docs
View: 5696
Download Read Online
Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.

An Introduction To Stochastic Modeling

Author: Mark A. Pinsky
Publisher: Academic Press
ISBN: 0123814162
Size: 15.34 MB
Format: PDF, ePub, Mobi
View: 2426
Download Read Online
Serving as the foundation for a one-semester course in stochastic processes for students familiar with elementary probability theory and calculus, Introduction to Stochastic Modeling, Third Edition, bridges the gap between basic probability and an intermediate level course in stochastic processes. The objectives of the text are to introduce students to the standard concepts and methods of stochastic modeling, to illustrate the rich diversity of applications of stochastic processes in the applied sciences, and to provide exercises in the application of simple stochastic analysis to realistic problems. * Realistic applications from a variety of disciplines integrated throughout the text * Plentiful, updated and more rigorous problems, including computer "challenges" * Revised end-of-chapter exercises sets-in all, 250 exercises with answers * New chapter on Brownian motion and related processes * Additional sections on Matingales and Poisson process * Solutions manual available to adopting instructors

Probability And Statistics For Computer Scientists Second Edition

Author: Michael Baron
Publisher: CRC Press
ISBN: 1439875901
Size: 53.41 MB
Format: PDF, ePub
View: 286
Download Read Online
Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.