Bioinspired Photonics

Author: Viktoria Greanya
Publisher: CRC Press
ISBN: 146650403X
Size: 48.99 MB
Format: PDF, ePub, Docs
View: 5808
Download Read Online
Harness the Wonders of the Natural World As our in-depth knowledge of biological systems increases, the number of devices and applications built from these principles is rapidly growing. Bioinspired Photonics: Optical Structures and Systems Inspired by Nature provides an interdisciplinary introduction to the captivating and diverse photonic systems seen in nature and explores how we take inspiration from them to create new photonic materials and devices. See How Photonic Systems in Nature Work The book presents important examples of how combining biological inspiration with state-of-the-art nanoscience is resulting in the emergence of a field focused on developing real improvements in materials and devices. The author walks readers through examples taken from nature, delves into their characterization and performance, and describes the unique features of their performance. She interweaves this material with discussions on fabricating synthetic versions of the systems as well as specific aspects of the biological examples that researchers are leveraging in their own work. Replicate and Take Inspiration from These Systems for Fabrication and Application Suitable for a multidisciplinary audience of scientists, technologists, students, and lay people, this book covers a wide range of topics encompassed by bioinspired photonics in an easy-to-follow way. Newcomers to the field will acquire the minimum background necessary to begin exploring this fascinating subject while experts will discover state-of-the-art approaches to biomimetic and bioinspired photonic systems.

Engineered Biomimicry

Author: Akhlesh Lakhtakia
Publisher: Newnes
ISBN: 0123914329
Size: 74.53 MB
Format: PDF, Mobi
View: 592
Download Read Online
Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living natural systems. Engineered Biomimicry helps physicists, engineers and material scientists seek solutions in nature to the most pressing technical problems of our times, while providing a solid understanding of the important role of biophysics. Some physical applications include adhesion superhydrophobicity and self-cleaning, structural coloration, photonic devices, biomaterials and composite materials, sensor systems, robotics and locomotion, and ultra-lightweight structures. Explores biomimicry, a fast-growing, cross-disciplinary field in which researchers study biological activities in nature to make critical advancements in science and engineering Introduces bioinspiration, biomimetics, and bioreplication, and provides biological background and practical applications for each Cutting-edge topics include bio-inspired robotics, microflyers, surface modification and more

Photonic Structures Inspired By Nature

Author: Mathias Kolle
Publisher: Springer Science & Business Media
ISBN: 9783642151699
Size: 40.12 MB
Format: PDF, Docs
View: 2018
Download Read Online
Unlike most natural colours that are based on pigment absorption, the striking iridescent and intense colouration of many butterflies, birds or beetles stems from the interaction of light with periodic sub-micrometer surface or volume patterns, so called “photonic structures”. These “structural colours” are increasingly well understood, but they are difficult to create artificially and exploit technologically. In this thesis the field of natural structural colours and biomimetic photonic structures is covered in a wide scope, ranging from plant photonics to theoretical optics. It demonstrates diffractive elements on the petal surfaces of many flowering plant species; these form the basis for the study of the role of structural colours in pollinator attraction. Self-assembly techniques, combined with scale able nanofabrication methods, were used to create complex artificial photonic structures inspired by those found in nature. In particular, the colour effect of a Papilio butterfly was mimicked and, by variation of its design motive, enhanced. All photonic effects described here are underpinned by state-of-the-art model calculations.

Physical Hydrodynamics

Author: Etienne Guyon
Publisher: Oxford University Press
ISBN: 0198702442
Size: 13.55 MB
Format: PDF, ePub, Mobi
View: 1211
Download Read Online
This second edition of Physical Hydrodynamics is a deeply enriched version of a classical textbook on fluid dynamics. It retains the same pedagogical spirit, based on the authors' experience of teaching university students in the physical sciences, and emphasizes an experimental (inductive) approach rather than the more formal approach found in many textbooks in the field. Today the field is more widely open to other experimental sciences: materials,environmental, life, and earth sciences, as well as the engineering sciences. Representative examples from these fields have been included where possible, while retaining a general presentation in each case.

Optical Biomimetics

Author: Maryanne Large
Publisher: Woodhead Pub Limited
ISBN: 9781845698027
Size: 13.93 MB
Format: PDF, Kindle
View: 736
Download Read Online
Optical biomimetics, the study of natural systems to inspire novel solutions to problems in optical technologies, has attracted growing interest. Optical biomimetics reviews key research in this area, focusing on the techniques and approaches used to characterise and mimic naturally occurring optical effects. Beginning with an overview of natural photonic structures, Optical biomimetics goes on to discuss optical applications of biomolecules, such as retinylidene and bacteriorhodopsin, polarisation effects in natural photonic structures and their applications, and biomimetic nanostructures for anti-reflection (AR) devices. Control of iridescence in natural photonic structures is explored through the case of butterfly scales, alongside a consideration of nanostructure fabrication using natural synthesis. The investigation into silk optical materials is followed by a final discussion of the control of florescence in natural photonic structures. With its distinguished editor and international team of expert contributors, Optical biomimetics is a valuable guide for scientists and engineers in both academia and industry who are already studying biomimetics, and a fascinating introduction for those who wish to move into this interesting new field. Reviews key research in optical biomimetics, focusing on the techniques and approaches used to characterise and mimic naturally-occurring optical effects Discusses optical applications of biomolecules, such as retinylidene and bacteriorhodopsin Explores the control of iridescence in natural photonic structures through the case of butterfly scales

Biologically Inspired Computer Vision

Author: Gabriel Cristobal
Publisher: John Wiley & Sons
ISBN: 3527412646
Size: 66.51 MB
Format: PDF
View: 3469
Download Read Online
As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at unprecedented detail and volume, the need to process and interpret all the data has made image processing and computer vision increasingly important. Sources of data that have to be routinely dealt with today's applications include video transmission, wireless communication, automatic fingerprint processing, massive databanks, non-weary and accurate automatic airport screening, robust night vision, just to name a few. Multidisciplinary inputs from other disciplines such as physics, computational neuroscience, cognitive science, mathematics, and biology will have a fundamental impact in the progress of imaging and vision sciences. One of the advantages of the study of biological organisms is to devise very different type of computational paradigms by implementing a neural network with a high degree of local connectivity. This is a comprehensive and rigorous reference in the area of biologically motivated vision sensors. The study of biologically visual systems can be considered as a two way avenue. On the one hand, biological organisms can provide a source of inspiration for new computational efficient and robust vision models and on the other hand machine vision approaches can provide new insights for understanding biological visual systems. Along the different chapters, this book covers a wide range of topics from fundamental to more specialized topics, including visual analysis based on a computational level, hardware implementation, and the design of new more advanced vision sensors. The last two sections of the book provide an overview of a few representative applications and current state of the art of the research in this area. This makes it a valuable book for graduate, Master, PhD students and also researchers in the field.

Nanophotonics

Author: Paras N. Prasad
Publisher: John Wiley & Sons
ISBN: 9780471670247
Size: 61.23 MB
Format: PDF
View: 4949
Download Read Online
The only comprehensive treatment of nanophotonics currently available Photonics is an all-encompassing optical science and technology which has impacted a diverse range of fields, from information technology to health care. Nanophotonics is photonic science and technology that utilizes light-matter interactions on the nanoscale, where researchers are discovering new phenomena and developing technologies that go well beyond what is possible with conventional photonics and electronics. These new technologies could include efficient solar power generation, high-bandwidth and high-speed communications, high-capacity data storage, and flexible- and high-contrast displays. In addition, nanophotonics will continue to impact biomedical technologies by providing new and powerful diagnostic techniques, as well as light-guided and activated therapies. Nanophotonics provides the only available comprehensive treatment of this exciting, multidisciplinary field, offering a wide range of topics covering: * Foundations * Materials * Applications * Theory * Fabrication Nanophotonics introduces students to important and timely concepts and provides scientists and engineers with a cutting-edge reference. The book is intended for anyone who wishes to learn about light-matter interactions on the nanoscale, as well as applications of photonics for nanotechnology and nanobiotechnology. Written by an acknowledged leader in the field, this text provides an essential resource for those interested in the future of materials science and engineering, nanotechnology, and photonics.

Progress And Opportunities In Soft Photonics And Biologically Inspired Optics

Author:
Publisher:
ISBN:
Size: 44.36 MB
Format: PDF, ePub, Docs
View: 5587
Download Read Online
Abstract: Optical components made fully or partially from reconfigurable, stimuli‐responsive, soft solids or fluids—collectively referred to as soft photonics—are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano‐ and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics. Abstract : Soft and fluid materials combined with insights into the working principles of biological optics are poised to play important roles in the next generation of optical technologies. An overview of recent developments in soft photonics and biologically inspired optics is provided, which emphasizes the ties between the two fields and outlines future opportunities that result from advancements in soft and bioinspired photonics.

Nano And Biotech Based Materials For Energy Building Efficiency

Author: F. Pacheco Torgal
Publisher: Springer
ISBN: 3319275054
Size: 73.14 MB
Format: PDF
View: 7080
Download Read Online
This book presents the current state of knowledge on nanomaterials and their use in buildings, ranging from glazing and vacuum insulation to PCM composites. It also discusses recent applications in organic photovoltaics, photo-bioreactors, bioplastics and foams, making it an exciting read while also providing copious references to current research and applications for those wanting to pursue possible future research directions. Derek Clements-Croome, Emeritus Professor in Architectural Engineering, University of Reading (From the Foreword) Demonstrating how higher energy efficiency in new and existing buildings can help reduce global greenhouse gas emissions, this book details the way in which new technologies, manufacturing processes and products can serve to abate emissions from the energy sector and offer a cost-effective means of improving competitiveness and drive employment. Maximizing reader insights into how nano and biotech materials – such as aerogel based plasters, thermochromic glazings and thermal energy adsorbing glass, amongst others – can provide high energy efficiency performance in buildings, it provides practitioners in the field with an important high-tech tool to tackle key challenges and is essential reading for civil engineers, architects, materials scientists and researchers in the area of the sustainability of the built environment.