Blast Protection Of Civil Infrastructures And Vehicles Using Composites

Author: Nasim Uddin
Publisher: Elsevier
ISBN: 1845698037
Size: 23.83 MB
Format: PDF, Kindle
View: 973
Download Read Online
With the upsurge in terrorism in recent years and the possibility of accidental blast threats, there is growing interest in manufacturing blast ‘hardened’ structures and retrofitting blast mitigation materials to existing structures. Composites provide the ideal material for blast protection as they can be engineered to give different levels of protection by varying the reinforcements and matrices. Part one discusses general technical issues with chapters on topics such as blast threats and types of blast damage, processing polymer matrix composites for blast protection, standards and specifications for composite blast protection materials, high energy absorbing composite materials for blast resistant design, modelling the blast response of hybrid laminated composite plates and the response of composite panels to blast wave pressure loadings. Part two reviews applications including ceramic matrix composites for ballistic protection of vehicles and personnel, using composites to protect military vehicles from mine blasts, blast protection of buildings using FRP matrix composites, using composites in blast resistant walls for offshore, naval and defence related structures, using composites to improve the blast resistance of columns in buildings, retrofitting using fibre reinforced polymer composites for blast protection of buildings and retrofitting to improve the blast response of concrete masonry walls. With its distinguished editor and team of expert contributors, Blast protection of civil infrastructures and vehicles using composites is a standard reference for all those concerned with protecting structures from the effects of blasts in both the civil and military sectors. Reviews the role of composites in blast protection with an examination of technical issues, applications of composites and ceramic matrix composites Presents numerical examples of simplified blast load computation and an overview of the basics of high explosives includes important properties and physical forms Varying applications of composites for protection are explored including military and non-military vehicles and increased resistance in building columns and masonry walls

Developments In Fiber Reinforced Polymer Frp Composites For Civil Engineering

Author: Nasim Uddin
Publisher: Elsevier
ISBN: 0857098950
Size: 24.97 MB
Format: PDF, ePub, Docs
View: 1531
Download Read Online
The use of fiber-reinforced polymer (FRP) composite materials has had a dramatic impact on civil engineering techniques over the past three decades. FRPs are an ideal material for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. Developments in fiber-reinforced polymer (FRP) composites for civil engineering outlines the latest developments in fiber-reinforced polymer (FRP) composites and their applications in civil engineering. Part one outlines the general developments of fiber-reinforced polymer (FRP) use, reviewing recent advancements in the design and processing techniques of composite materials. Part two outlines particular types of fiber-reinforced polymers and covers their use in a wide range of civil engineering and structural applications, including their use in disaster-resistant buildings, strengthening steel structures and bridge superstructures. With its distinguished editor and international team of contributors, Developments in fiber-reinforced polymer (FRP) composites for civil engineering is an essential text for researchers and engineers in the field of civil engineering and industries such as bridge and building construction. Outlines the latest developments in fiber-reinforced polymer composites and their applications in civil engineering Reviews recent advancements in the design and processing techniques of composite materials Covers the use of particular types of fiber-reinforced polymers in a wide range of civil engineering and structural applications

Rehabilitation Of Metallic Civil Infrastructure Using Fiber Reinforced Polymer Frp Composites

Author: Vistasp M. Karbhari
Publisher: Elsevier
ISBN: 0857096656
Size: 19.66 MB
Format: PDF, Docs
View: 382
Download Read Online
Fiber-reinforced polymer (FRP) composites are becoming increasingly popular as a material for rehabilitating aging and damaged structures. Rehabilitation of Metallic Civil Infrastructure Using Fiber-Reinforced Polymer (FRP) Composites explores the use of fiber-reinforced composites for enhancing the stability and extending the life of metallic infrastructure such as bridges. Part I provides an overview of materials and repair, encompassing topics of joining steel to FRP composites, finite element modeling, and durability issues. Part II discusses the use of FRP composites to repair steel components, focusing on thin-walled (hollow) steel sections, steel tension members, and cracked aluminum components. Building on Part II, the third part of the book reviews the fatigue life of strengthened components. Finally, Part IV covers the use of FRP composites to rehabilitate different types of metallic infrastructure, with chapters on bridges, historical metallic structures and other types of metallic infrastructure. Rehabilitation of Metallic Civil Infrastructure Using Fiber-Reinforced Polymer (FRP) Composites represents a standard reference for engineers and designers in infrastructure and fiber-reinforced polymer areas and manufacturers in the infrastructure industry, as well as academics and researchers in the field. Looks at the use of FRP composites to repair components such as hollow steel sections and steel tension members Considers ways of assessing the durability and fatigue life of components Reviews applications of FRP to infrastructure such as steel bridges

Innovative Developments Of Advanced Multifunctional Nanocomposites In Civil And Structural Engineering

Author: Kenneth Loh
Publisher: Woodhead Publishing
ISBN: 1782423443
Size: 19.80 MB
Format: PDF, Docs
View: 838
Download Read Online
Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering focuses on nanotechnology, the innovation and control of materials at 100 nm or smaller length scales, and how they have revolutionized almost all of the various disciplines of science and engineering study. In particular, advances in synthesizing, imaging, and manipulating materials at the nano-scale have provided engineers with a broader array of materials and tools for creating high-performance devices. Nanomaterials possess drastically different properties than those of their bulk counterparts mainly because of their high surface-to-mass ratios and high surface energies/reactivity. For instance, carbon nanotubes have been shown to possess impressive mechanical strength, stiffness, and electrical conductivity superior to that of bulk carbon. Whilst nanotechnology has become deeply rooted in electrical, chemical, and materials engineering disciplines, its proliferation into civil engineering did not begin until fairly recently. This book covers that proliferation and the main challenges associated with the integration of nanomaterials and nano-scale design principles into civil and structural engineering. Examines nanotechnology and its application to not only structural engineering, but also transportation, new infrastructure materials, and the applications of nanotechnology to existing structural systems Focuses on how nanomaterials can provide enhanced sensing capabilities and mechanical reinforcement of the original structural material Analyzes experimental and computational work carried out by world-renowned researchers

Durability Of Engineering Structures

Author: J Bijen
Publisher: Elsevier
ISBN: 1855738562
Size: 69.29 MB
Format: PDF
View: 4283
Download Read Online
Civil engineering failures currently amount to 5 to 10 % of the total investment in new buildings and structures. These failures not only represent important cost considerations, they also have an environmental burden associated with them. Structures often deteriorate because not enough attention is given during the design stage and most standards for structural design do not cover design for service life. Designing for durability is often left to the structural designer or architect who may not have the necessary skills, and the result is all too often failure, incurring high maintenance and repair costs. Knowledge of the long-term behaviour of materials, building components and structures is the basis for avoiding these failures. Durability of engineering structures uses on the design of buildings for service life, effective maintenance and repair techniques in order to reduce the likelihood of failure. It describes the in situ performance of all the major man-made materials used in civil engineering construction - metals (steel and aluminium), concrete and wood. In addition some relatively new high-performance materials are discussed - high-performance concrete, high-performance steel and fibre-reinforced polymers (FRP). Deterioration mechanisms and the measures to counteract these, as well as subsequent maintenance and repair techniques are also considered and the latest standards on durability and repair are explained. Strategies for durability, maintenance and repair, including life cycle costing and environmental life cycle assessment methods are discussed. Finally practical case studies show how repairs can be made and the best ways of ensuring long term durability. This book is aimed at students in civil engineering, engineers, architects, contractors, plant managers, maintenance managers and inspection engineers. Explains the reasons why structures often deteriorate before they should because of poor design Shows how to design structures effectively for service life Considers durability characteristics of standard and high performance construction materials

Mechanical Testing Of Advanced Fibre Composites

Author: J M Hodgkinson
Publisher: Elsevier
ISBN: 1855738910
Size: 28.36 MB
Format: PDF, ePub, Docs
View: 690
Download Read Online
Testing of composite materials can present complex problems but is essential in order to ensure the reliable, safe and cost-effective performance of any engineering structure. This essentially practical book, complied from the contributions of leading professionals in the field, describes a wide range of test methods which can be applied to various types of advanced fibre composites. The book focuses on high modulus, high strength fibre/plastic composites and also covers highly anisotrpoic materials such as carbon, aramid and glass. Engineers and designers specifying the use of materials in structures will find this book an invaluable guide to best practice throughout the range of industrial sectors where FRCs are employed.

Durability Of Strain Hardening Fibre Reinforced Cement Based Composites Shcc

Author: Gideon P.A.G. van Zijl
Publisher: Springer Science & Business Media
ISBN: 9789400703384
Size: 42.37 MB
Format: PDF
View: 7353
Download Read Online
Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC) were named after their ability to resist increased tensile force after crack formation, over a significant tensile deformation range. The increased resistance is achieved through effective crack bridging by fibres, across multiple cracks of widths in the micro-range. Whether these small crack widths are maintained under sustained, cyclic or other load paths, and whether the crack width limitation translates into durability through retardation of ingress of moisture, gas and other deleterious matter, are scrutinized in this book by evaluation of test results from several laboratories internationally. The durability of SHCC under mechanical, chemical, thermal and combined actions is considered, both for the composite and the fibre types typically used in SHCC. The compilation of this state-of-the-art report has been an activity of the RILEM TC 208-HFC, Subcommittee 2: Durability, during the committee life 2005-2009.

Eco Efficient Construction And Building Materials

Author: Fernando Pacheco-Torgal
Publisher: Woodhead Publishing
ISBN: 0857097725
Size: 18.21 MB
Format: PDF
View: 7656
Download Read Online
Eco-efficient Construction and Building Materials reviews ways of assessing the environmental impact of construction and building materials. Part one discusses the application of life cycle assessment (LCA) methodology to building materials as well as eco-labeling. Part two includes case studies showing the application of LCA methodology to different types of building material, from cement and concrete to wood and adhesives used in building. Part three includes case studies applying LCA methodology to particular structures and components. Reviews ways of assessing the environmental impact of construction and building materials Provides a thorough overview, including strengths and shortcomings, of the life cycle assessment (LCA) and eco-labeling of eco-efficient construction and building materials Includes case studies showing the application of LCA methodology to different types of building material, from cement and concrete to wood and adhesives used in building

Introduction To Aerospace Materials

Author: Adrian P Mouritz
Publisher: Elsevier
ISBN: 0857095153
Size: 18.52 MB
Format: PDF, ePub
View: 4317
Download Read Online
The structural materials used in airframe and propulsion systems influence the cost, performance and safety of aircraft, and an understanding of the wide range of materials used and the issues surrounding them is essential for the student of aerospace engineering.Introduction to aerospace materials reviews the main structural and engine materials used in aircraft, helicopters and spacecraft in terms of their production, properties, performance and applications. The first three chapters of the book introduce the reader to the range of aerospace materials, focusing on recent developments and requirements. Following these introductory chapters, the book moves on to discuss the properties and production of metals for aerospace structures, including chapters covering strengthening of metal alloys, mechanical testing, and casting, processing and machining of aerospace metals. The next ten chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys, as well as the properties and processing of polymers, composites and wood. Chapters on performance issues such as fracture, fatigue and corrosion precede a chapter focusing on inspection and structural health monitoring of aerospace materials. Disposal/recycling and materials selection are covered in the final two chapters. With its comprehensive coverage of the main issues surrounding structural aerospace materials,Introduction to aerospace materials is essential reading for undergraduate students studying aerospace and aeronautical engineering. It will also be a valuable resource for postgraduate students and practising aerospace engineers. Reviews the main structural and engine materials used in aircraft, helicopters and space craft in terms of their properties, performance and applications Introduces the reader to the range of aerospace materials, focusing on recent developments and requirements, and discusses the properties and production of metals for aerospace structures Chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys