Causality

Author: Carlo Berzuini
Publisher: John Wiley & Sons
ISBN: 1119941733
Size: 41.68 MB
Format: PDF, ePub, Docs
View: 1249
Download Read Online
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.

Applied Bayesian Modeling And Causal Inference From Incomplete Data Perspectives

Author: Andrew Gelman
Publisher: John Wiley & Sons
ISBN: 0470090448
Size: 46.55 MB
Format: PDF, Docs
View: 3236
Download Read Online
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.

Causal Inference In Statistics

Author: Judea Pearl
Publisher: John Wiley & Sons
ISBN: 1119186846
Size: 73.53 MB
Format: PDF, Mobi
View: 5836
Download Read Online
Causal Inference in Statistics: A Primer Judea Pearl, Computer Science and Statistics, University of California Los Angeles, USA Madelyn Glymour, Philosophy, Carnegie Mellon University, Pittsburgh, USA and Nicholas P. Jewell, Biostatistics, University of California, Berkeley, USA Causality is central to the understanding and use of data. Without an understanding of cause effect relationships, we cannot use data to answer questions as basic as, “Does this treatment harm or help patients?” But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Statistics And Causality

Author: Wolfgang Wiedermann
Publisher: John Wiley & Sons
ISBN: 1118947045
Size: 72.68 MB
Format: PDF, ePub, Mobi
View: 1688
Download Read Online
A one-of-a-kind guide to identifying and dealing with modern statistical developments in causality Written by a group of well-known experts, Statistics and Causality: Methods for Applied Empirical Research focuses on the most up-to-date developments in statistical methods in respect to causality. Illustrating the properties of statistical methods to theories of causality, the book features a summary of the latest developments in methods for statistical analysis of causality hypotheses. The book is divided into five accessible and independent parts. The first part introduces the foundations of causal structures and discusses issues associated with standard mechanistic and difference-making theories of causality. The second part features novel generalizations of methods designed to make statements concerning the direction of effects. The third part illustrates advances in Granger-causality testing and related issues. The fourth part focuses on counterfactual approaches and propensity score analysis. Finally, the fifth part presents designs for causal inference with an overview of the research designs commonly used in epidemiology. Statistics and Causality: Methods for Applied Empirical Research also includes: • New statistical methodologies and approaches to causal analysis in the context of the continuing development of philosophical theories • End-of-chapter bibliographies that provide references for further discussions and additional research topics • Discussions on the use and applicability of software when appropriate Statistics and Causality: Methods for Applied Empirical Research is an ideal reference for practicing statisticians, applied mathematicians, psychologists, sociologists, logicians, medical professionals, epidemiologists, and educators who want to learn more about new methodologies in causal analysis. The book is also an excellent textbook for graduate-level courses in causality and qualitative logic. Wolfgang Wiedermann, PhD, is Assistant Professor in the Department of Educational, School, and Counseling Psychology at the University of Missouri, Columbia. His research interests include the development of methods for direction dependence analysis and causal inference, the development and evaluation of methods for person-oriented research, and methods for intensive longitudinal data. Alexander von Eye, PhD, is Professor Emeritus of Psychology at Michigan State University. His research interests include statistical methods, categorical data analysis, and human development. Dr. von Eye is Section Editor for the Encyclopedia of Statistics in Behavioral Science and is the coauthor of Log-Linear Modeling: Concepts, Interpretation, and Application, both published by Wiley.

Clinical Trials

Author: Steven Piantadosi
Publisher: John Wiley & Sons
ISBN: 1118625854
Size: 78.40 MB
Format: PDF
View: 7520
Download Read Online
Learn rigorous statistical methods to ensure valid clinical trials This Second Edition of the critically hailed Clinical Trials builds on the text's reputation as a straightforward and authoritative presentation of statistical methods for clinical trials. Readers are introduced to the fundamentals of design for various types of clinical trials and then skillfully guided through the complete process of planning the experiment, assembling a study cohort, assessing data, and reporting results. Throughout the process, the author alerts readers to problems that may arise during the course of the trial and provides commonsense solutions. The author bases the revisions and updates on his own classroom experience, as well as feedback from students, instructors, and medical and statistical professionals involved in clinical trials. The Second Edition greatly expands its coverage, ranging from statistical principles to controversial topics, including alternative medicine and ethics. At the same time, it offers more pragmatic advice for issues such as selecting outcomes, sample size, analysis, reporting, and handling allegations of misconduct. Readers familiar with the First Edition will discover completely new chapters, including: * Contexts for clinical trials * Statistical perspectives * Translational clinical trials * Dose-finding and dose-ranging designs Each chapter is accompanied by a summary to reinforce the key points. Revised discussion questions stimulate critical thinking and help readers understand how they can apply their newfound knowledge, and updated references are provided to direct readers to the most recent literature. This text distinguishes itself with its accessible and broad coverage of statistical design methods--the crucial building blocks of clinical trials and medical research. Readers learn to conduct clinical trials that produce valid qualitative results backed by rigorous statistical methods.

Introductory Statistics And Analytics

Author: Peter C. Bruce
Publisher: John Wiley & Sons
ISBN: 1118881354
Size: 71.74 MB
Format: PDF, Mobi
View: 170
Download Read Online
"Developed by the founder of Statistics.com, one of the first online e-learning companies in the discipline, and class-tested there for over ten years, this intuitive book provides a brief but essential introduction to statistics for those with little or no prior exposure to basic probability and statistics. Its simulation/resampling approach (drawing numbers or data from a hat) demystifies traditional formulas and demonstrates the fundamental basis for statistical inference. Topics covered include probability, the Normal distribution, hypothesis testing, independence, conditional probability, Bayes Rule, 2-way tables, random sampling, and confidence intervals. Special connections to statistical distance, recommender systems, predictive modeling, and general analytics are systematically woven throughout the text. The aim is to apply statistically valid designs to basic studies, and test hypotheses regarding proportions and means. The goal is real understanding, not cookbook learning. Even the most anxious novice (as well as the expert) will benefit. The book meets all of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) for the introductory statistics course, as developed in 2005 by a group of noted educators and with funding from the American Statistical Association. Excel and StatCrunch are the software systems of choice. R subroutines are available on an author-maintained web site. The book is available in print and online"--

Exploratory Causal Analysis With Time Series Data

Author: James M. McCracken
Publisher: Morgan & Claypool Publishers
ISBN: 1627059342
Size: 26.58 MB
Format: PDF
View: 2793
Download Read Online
Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.

Bias And Causation

Author: Herbert I. Weisberg
Publisher: Wiley
ISBN: 0470631090
Size: 25.14 MB
Format: PDF, Mobi
View: 7202
Download Read Online
A one-of-a-kind resource on identifying and dealing with bias in statistical research on causal effects Do cell phones cause cancer? Can a new curriculum increase student achievement? Determining what the real causes of such problems are, and how powerful their effects may be, are central issues in research across various fields of study. Some researchers are highly skeptical of drawing causal conclusions except in tightly controlled randomized experiments, while others discount the threats posed by different sources of bias, even in less rigorous observational studies. Bias and Causation presents a complete treatment of the subject, organizing and clarifying the diverse types of biases into a conceptual framework. The book treats various sources of bias in comparative studies—both randomized and observational—and offers guidance on how they should be addressed by researchers. Utilizing a relatively simple mathematical approach, the author develops a theory of bias that outlines the essential nature of the problem and identifies the various sources of bias that are encountered in modern research. The book begins with an introduction to the study of causal inference and the related concepts and terminology. Next, an overview is provided of the methodological issues at the core of the difficulties posed by bias. Subsequent chapters explain the concepts of selection bias, confounding, intermediate causal factors, and information bias along with the distortion of a causal effect that can result when the exposure and/or the outcome is measured with error. The book concludes with a new classification of twenty general sources of bias and practical advice on how mathematical modeling and expert judgment can be combined to achieve the most credible causal conclusions. Throughout the book, examples from the fields of medicine, public policy, and education are incorporated into the presentation of various topics. In addition, six detailed case studies illustrate concrete examples of the significance of biases in everyday research. Requiring only a basic understanding of statistics and probability theory, Bias and Causation is an excellent supplement for courses on research methods and applied statistics at the upper-undergraduate and graduate level. It is also a valuable reference for practicing researchers and methodologists in various fields of study who work with statistical data. This book was selected as the 2011 Ziegel Prize Winner in Technometrics for the best book reviewed by the journal. It is also the winner of the 2010 PROSE Award for Mathematics from The American Publishers Awards for Professional and Scholarly Excellence

Mixed Models

Author: Eugene Demidenko
Publisher: John Wiley & Sons
ISBN: 1118091574
Size: 34.79 MB
Format: PDF, Kindle
View: 2356
Download Read Online
Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models' statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. The new edition includes significant updating, over 300 exercises, stimulating chapter projects and model simulations, inclusion of R subroutines, and a revised text format. The target audience continues to be graduate students and researchers. An author-maintained web site is available with solutions to exercises and a compendium of relevant data sets.

Statistical Analysis With Missing Data

Author: Roderick J. A. Little
Publisher: John Wiley & Sons
ISBN: 1118625889
Size: 45.77 MB
Format: PDF, ePub, Docs
View: 4000
Download Read Online
Praise for the First Edition of Statistical Analysis with Missing Data "An important contribution to the applied statistics literature.... I give the book high marks for unifying and making accessible much of the past and current work in this important area." —William E. Strawderman, Rutgers University "This book...provide[s] interesting real-life examples, stimulating end-of-chapter exercises, and up-to-date references. It should be on every applied statistician’s bookshelf." —The Statistician "The book should be studied in the statistical methods department in every statistical agency." —Journal of Official Statistics Statistical analysis of data sets with missing values is a pervasive problem for which standard methods are of limited value. The first edition of Statistical Analysis with Missing Data has been a standard reference on missing-data methods. Now, reflecting extensive developments in Bayesian methods for simulating posterior distributions, this Second Edition by two acknowledged experts on the subject offers a thoroughly up-to-date, reorganized survey of current methodology for handling missing-data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe rigorous yet simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing-data mechanism and apply the theory to a wide range of important missing-data problems. The new edition now enlarges its coverage to include: Expanded coverage of Bayesian methodology, both theoretical and computational, and of multiple imputation Analysis of data with missing values where inferences are based on likelihoods derived from formal statistical models for the data-generating and missing-data mechanisms Applications of the approach in a variety of contexts including regression, factor analysis, contingency table analysis, time series, and sample survey inference Extensive references, examples, and exercises Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Statistical Analysis With Missing Data was among those chosen.