Computational Statics And Dynamics

Author: Andreas Öchsner
Publisher: Springer
ISBN: 9811007330
Size: 33.30 MB
Format: PDF, Kindle
View: 1407
Download Read Online
This book introduces readers to modern computational mechanics based on the finite element method. It helps students succeed in mechanics courses by showing them how to apply the fundamental knowledge they gained in the first years of their engineering education to more advanced topics. In order to deepen readers’ understanding of the derived equations and theories, each chapter also includes supplementary problems. These problems start with fundamental knowledge questions on the theory presented in the chapter, followed by calculation problems. In total over 80 such calculation problems are provided, along with brief solutions for each. This book is especially designed to meet the needs of Australian students, reviewing the mathematics covered in their first two years at university. The 13-week course comprises three hours of lectures and two hours of tutorials per week.

Computational Statics Revision Course

Author: Zia Javanbakht
Publisher: Springer
ISBN: 3319674625
Size: 72.20 MB
Format: PDF, Docs
View: 5489
Download Read Online
This revision and work book offers a very specific concept for learning the finite element method applying it to problems from statics of: It skips all the classical derivations and focusses only the essential final results. Based on these `essentials', fully solved example problems are presented. To facilitate the initial learning process, the authors compiled 10 recommended steps for a linear finite element solution procedure (`hand calculation') and all the solved examples follow this simple scheme. These 10 recommended steps help engineering students to master the finite element method and guide through fundamental standard problems, although there are neither 10 recommended steps for real-life engineering problems nor 10 standard problems that cover all possible problems that a young engineer may face during his first years of professional work. This revision course accompanies the textbook "Computational Statics and Dynamics: An Introduction Based on the Finite Element Method" by the same authors.

A Project Based Introduction To Computational Statics

Author: Andreas Öchsner
Publisher: Springer
ISBN: 3319698176
Size: 47.38 MB
Format: PDF, ePub, Mobi
View: 5064
Download Read Online
This book uses a novel concept to teach the finite element method, applying it to solid mechanics. This major conceptual shift takes away lengthy theoretical derivations in the face-to-face interactions with students and focuses on the summary of key equations and concepts; and to practice these on well-chosen example problems. The theoretical derivations are provided as additional reading and students must study and review the derivations in a self-study approach. The book provides the theoretical foundations to solve a comprehensive design project in tensile testing. A classical clip-on extensometer serves as the demonstrator on which to apply the provided concepts. The major goal is to derive the calibration curve based on different approaches, i.e., analytical mechanics and based on the finite element method, and to consider further design questions such as technical drawings, manufacturing, and cost assessment. Working with two concepts, i.e., analytical and computational mechanics strengthens the vertical integration of knowledge and allows the student to compare and understand the different concepts, as well as highlighting the essential need for benchmarking any numerical result.

A First Introduction To The Finite Element Analysis Program Msc Marc Mentat

Author: Andreas Öchsner
Publisher: Springer
ISBN: 3319719157
Size: 60.44 MB
Format: PDF, Kindle
View: 615
Download Read Online
This book offers a brief introduction to the general-purpose finite element program MSC Marc, focusing on providing simple examples, often single-element problems, which can easily be related to the theory that is discussed in finite element lectures. As such, it is an ideal companion book to classical introductory courses on the finite element method. MSC Marc is a specialized program for non-linear problems (implicit solver), which is distributed by the MSC Software Corporation and commonly used in academia and industry. The documentation of all finite element programs now includes a variety of step-by-step examples of differing complexity, and all software companies offer professional workshops on different topics. Since the first edition of the book, there have been several new releases of Marc/Mentat and numerous changes. This new edition incorporates the latest Marc/Mentat software developments and new examples.

One Dimensional Finite Elements

Author: Andreas Öchsner
Publisher: Springer
ISBN: 331975145X
Size: 19.82 MB
Format: PDF, Docs
View: 7771
Download Read Online
This textbook presents finite element methods using exclusively one-dimensional elements. It presents the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader will easily understand the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. Although the description is easy, it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics such as plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics. Each chapter also includes a few exercise problems, with short answers provided at the end of the book. The second edition appears with a complete revision of all figures. It also presents a complete new chapter special elements and added the thermal conduction into the analysis of rod elements. The principle of virtual work has also been introduced for the derivation of the finite-element principal equation.

Computational Materials Engineering

Author: Koenraad George Frans Janssens
Publisher: Academic Press
ISBN: 9780080555492
Size: 50.12 MB
Format: PDF, Mobi
View: 1255
Download Read Online
Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers. Readers from students to practicing engineers to materials research scientists will find in this book a single source of the major elements that make up contemporary computer modeling of materials characteristics and behavior. The reader will gain an understanding of the underlying statistical and analytical tools that are the basis for modeling complex material interactions, including an understanding of computational thermodynamics and molecular kinetics; as well as various modeling systems. Finally, the book will offer the reader a variety of algorithms to use in solving typical modeling problems so that the theory presented herein can be put to real-world use. Balanced coverage of fundamentals of materials modeling, as well as more advanced aspects of modeling, such as modeling at all scales from the atomic to the molecular to the macro-material Concise, yet rigorous mathematical coverage of such analytical tools as the Potts type Monte Carlo method, cellular automata, phase field, dislocation dynamics and Finite Element Analysis in statistical and analytical modeling

Introduction To Finite And Spectral Element Methods Using Matlab

Author: Constantine Pozrikidis
Publisher: CRC Press
ISBN: 142005709X
Size: 70.11 MB
Format: PDF
View: 5560
Download Read Online
Why another book on the finite element method? There are currently more than 200 books in print with "Finite Element Method" in their titles. Many are devoted to special topics or emphasize error analysis and numerical accuracy. Others stick to the fundamentals and do little to describe the development and implementation of algorithms for solving real-world problems. Introduction to Finite and Spectral Element Methods Using MATLAB provides a means of quickly understanding both the theoretical foundation and practical implementation of the finite element method and its companion spectral element method. Written in the form of a self-contained course, it introduces the fundamentals on a need-to-know basis and emphasizes algorithm development and computer implementation of the essential procedures. Firmly asserting the importance of simultaneous practical experience when learning any numerical method, the author provides FSELIB: a software library of user-defined MATLAB functions and complete finite and spectral element codes. FSELIB is freely available for download from http://dehesa.freeshell.org, which is also a host for the book, providing further information, links to resources, and FSELIB updates. The presentation is suitable for both self-study and formal course work, and its state-of-the-art review of the field make it equally valuable as a professional reference. With this book as a guide, you immediately will be able to run the codes as given and graphically display solutions to a wide variety of problems in heat transfer and solid, fluid, and structural mechanics.

Extended Finite Element And Meshfree Methods

Author: Rabczuk Timon
Publisher: Academic Press
ISBN: 9780128141069
Size: 36.28 MB
Format: PDF, Docs
View: 5518
Download Read Online
Extended Finite Element and Meshfree Methods provides an overview of, and investigates, recent developments in extended finite elements with a focus on applications to material failure in statics and dynamics. This class of methods is ideally suited for applications, such as crack propagation, two-phase flow, fluid-structure-interaction, optimization and inverse analysis because they do not require any remeshing. These methods include the original extended finite element method, smoothed extended finite element method (XFEM), phantom node method, extended meshfree methods, numerical manifold method and extended isogeometric analysis. This book also addresses their implementation and provides small MATLAB codes on each sub-topic. Also discussed are the challenges and efficient algorithms for tracking the crack path which plays an important role for complex engineering applications. Explains all the important theory behind XFEM and meshfree methods Provides advice on how to implement XFEM for a range of practical purposes, along with helpful MATLAB codes Draws on the latest research to explore new topics, such as the applications of XFEM to shell formulations, and extended meshfree and extended isogeometric methods Introduces alternative modeling methods to help readers decide what is most appropriate for their work