Contract Theory In Continuous Time Models

Author: Jakša Cvitanic
Publisher: Springer Science & Business Media
ISBN: 3642142001
Size: 38.34 MB
Format: PDF, Mobi
View: 3358
Download Read Online
In recent years there has been a significant increase of interest in continuous-time Principal-Agent models, or contract theory, and their applications. Continuous-time models provide a powerful and elegant framework for solving stochastic optimization problems of finding the optimal contracts between two parties, under various assumptions on the information they have access to, and the effect they have on the underlying "profit/loss" values. This monograph surveys recent results of the theory in a systematic way, using the approach of the so-called Stochastic Maximum Principle, in models driven by Brownian Motion. Optimal contracts are characterized via a system of Forward-Backward Stochastic Differential Equations. In a number of interesting special cases these can be solved explicitly, enabling derivation of many qualitative economic conclusions.

Continuous Time Stochastic Control And Optimization With Financial Applications

Author: Huyên Pham
Publisher: Springer Science & Business Media
ISBN: 3540895000
Size: 51.39 MB
Format: PDF, ePub, Docs
View: 5972
Download Read Online
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Stochastic Calculus For Finance Ii

Author: Steven E. Shreve
Publisher: Springer Science & Business Media
ISBN: 9780387401010
Size: 58.38 MB
Format: PDF, ePub, Docs
View: 5123
Download Read Online
This is the second volume in a two-volume sequence on Stochastic calculus models in finance. This second volume, which does not require the first volume as a prerequisite, covers infinite state models and continuous time stochastic calculus. The book is suitable for beginning masters-level students in mathematical finance and financial engineering.

A Game Theory Analysis Of Options

Author: Alexandre C. Ziegler
Publisher: Springer Science & Business Media
ISBN: 3540246908
Size: 52.67 MB
Format: PDF, ePub
View: 4083
Download Read Online
Modern option pricing theory was developed in the late sixties and early seventies by F. Black, R. e. Merton and M. Scholes as an analytical tool for pricing and hedging option contracts and over-the-counter warrants. How ever, already in the seminal paper by Black and Scholes, the applicability of the model was regarded as much broader. In the second part of their paper, the authors demonstrated that a levered firm's equity can be regarded as an option on the value of the firm, and thus can be priced by option valuation techniques. A year later, Merton showed how the default risk structure of cor porate bonds can be determined by option pricing techniques. Option pricing models are now used to price virtually the full range of financial instruments and financial guarantees such as deposit insurance and collateral, and to quantify the associated risks. Over the years, option pricing has evolved from a set of specific models to a general analytical framework for analyzing the production process of financial contracts and their function in the financial intermediation process in a continuous time framework. However, very few attempts have been made in the literature to integrate game theory aspects, i. e. strategic financial decisions of the agents, into the continuous time framework. This is the unique contribution of the thesis of Dr. Alexandre Ziegler. Benefiting from the analytical tractability of contin uous time models and the closed form valuation models for derivatives, Dr.

Stochastic Calculus For Finance I

Author: Steven Shreve
Publisher: Springer Science & Business Media
ISBN: 0387225277
Size: 69.12 MB
Format: PDF, Mobi
View: 3466
Download Read Online
Stochastic Calculus for Finance evolved from the first ten years of the Carnegie Mellon Professional Master's program in Computational Finance. The content of this book has been used successfully with students whose mathematics background consists of calculus and calculus-based probability. The text gives both precise statements of results, plausibility arguments, and even some proofs, but more importantly intuitive explanations developed and refine through classroom experience with this material are provided. The book includes a self-contained treatment of the probability theory needed for stochastic calculus, including Brownian motion and its properties. Advanced topics include foreign exchange models, forward measures, and jump-diffusion processes. This book is being published in two volumes. The first volume presents the binomial asset-pricing model primarily as a vehicle for introducing in the simple setting the concepts needed for the continuous-time theory in the second volume. Chapter summaries and detailed illustrations are included. Classroom tested exercises conclude every chapter. Some of these extend the theory and others are drawn from practical problems in quantitative finance. Advanced undergraduates and Masters level students in mathematical finance and financial engineering will find this book useful. Steven E. Shreve is Co-Founder of the Carnegie Mellon MS Program in Computational Finance and winner of the Carnegie Mellon Doherty Prize for sustained contributions to education.

Continuous Time Models In Corporate Finance Banking And Insurance

Author: Santiago Moreno-Bromberg
Publisher: Princeton University Press
ISBN: 1400889200
Size: 78.78 MB
Format: PDF
View: 7243
Download Read Online
Continuous-Time Models in Corporate Finance synthesizes four decades of research to show how stochastic calculus can be used in corporate finance. Combining mathematical rigor with economic intuition, Santiago Moreno-Bromberg and Jean-Charles Rochet analyze corporate decisions such as dividend distribution, the issuance of securities, and capital structure and default. They pay particular attention to financial intermediaries, including banks and insurance companies. The authors begin by recalling the ways that option-pricing techniques can be employed for the pricing of corporate debt and equity. They then present the dynamic model of the trade-off between taxes and bankruptcy costs and derive implications for optimal capital structure. The core chapter introduces the workhorse liquidity-management model—where liquidity and risk management decisions are made in order to minimize the costs of external finance. This model is used to study corporate finance decisions and specific features of banks and insurance companies. The book concludes by presenting the dynamic agency model, where financial frictions stem from the lack of interest alignment between a firm's manager and its financiers. The appendix contains an overview of the main mathematical tools used throughout the book. Requiring some familiarity with stochastic calculus methods, Continuous-Time Models in Corporate Finance will be useful for students, researchers, and professionals who want to develop dynamic models of firms' financial decisions.

Financial Markets In Continuous Time

Author: Rose-Anne Dana
Publisher: Springer Science & Business Media
ISBN: 3540711503
Size: 67.99 MB
Format: PDF, Docs
View: 1347
Download Read Online
This book explains key financial concepts, mathematical tools and theories of mathematical finance. It is organized in four parts. The first brings together a number of results from discrete-time models. The second develops stochastic continuous-time models for the valuation of financial assets (the Black-Scholes formula and its extensions), for optimal portfolio and consumption choice, and for obtaining the yield curve and pricing interest rate products. The third part recalls some concepts and results of equilibrium theory and applies this in financial markets. The last part tackles market incompleteness and the valuation of exotic options.

Mathematics For Finance

Author: Marek Capinski
Publisher: Springer
ISBN: 1852338466
Size: 37.80 MB
Format: PDF
View: 7352
Download Read Online
This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.

Pde And Martingale Methods In Option Pricing

Author: Andrea Pascucci
Publisher: Springer Science & Business Media
ISBN: 9788847017818
Size: 38.53 MB
Format: PDF, Docs
View: 285
Download Read Online
This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.