Earthquake Engineering For Structural Design

Author: Victor Gioncu
Publisher: CRC Press
ISBN: 0203848896
Size: 19.56 MB
Format: PDF
View: 2139
Download Read Online
Developments in Earthquake Engineering have focussed on the capacity and response of structures. They often overlook the importance of seismological knowledge to earthquake-proofing of design. It is not enough only to understand the anatomy of the structure, you must also appreciate the nature of the likely earthquake. Seismic design, as detailed in this book, is the bringing together of Earthquake Engineering and Engineering Seismology. It focuses on the seismological aspects of design – analyzing various types of earthquake and how they affect structures differently. Understanding the distinction between these earthquake types and their different impacts on buildings can make the difference between whether a building stands or falls, or at least to how much it costs to repair. Covering the basis and basics of the major international codes, this is the essential guide for professionals working on structures in earthquake zones around the world.

Earthquake Engineering For Structural Design

Author: W.F. Chen
Publisher: CRC Press
ISBN: 1420037145
Size: 29.24 MB
Format: PDF, ePub, Docs
View: 3226
Download Read Online
Many important advances in designing earthquake-resistant structures have occurred over the last several years. Civil engineers need an authoritative source of information that reflects the issues that are unique to the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Earthquake Engineering for Structural Design provides a tightly focused, concise, and valuable guide to the theoretical, practical, and computational aspects of earthquake engineering. In chapters contributed by renowned experts from around the world, this book supplies the latest concepts, design methodologies, and analytical techniques for mitigating the effects of seismic damage to structures. It discusses the fundamentals of earthquake engineering, explaining the causes of earthquakes and faulting, measurement of earthquakes, and characterization of seismicity. Subsequent chapters discuss the various types of earthquake damage to structures including recent improvements in earthquake performance, seismic design of buildings and bridges considering various types of construction materials, and performance-based seismic design and evaluation of building structures. The book introduces probabilistic approaches to performance-based methodologies as well as an application example of performance-based design. Earthquake Engineering for Structural Design offers practical tools gathered together in a convenient reference for immediate implementation. It is an ideal resource for civil and structural engineers specializing in earthquake engineering.

Structural Seismic Design Optimization And Earthquake Engineering Formulations And Applications

Author: Plevris, Vagelis
Publisher: IGI Global
ISBN: 1466616415
Size: 53.57 MB
Format: PDF, ePub
View: 1634
Download Read Online
Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.

Earthquake Engineering For Structural Design

Author: Sanjeev Mathur
Publisher: SBS Publishers
ISBN: 9789380090559
Size: 16.91 MB
Format: PDF, ePub, Docs
View: 1809
Download Read Online
Many important advances in designing earthquake- resistant structures have occurred over the last several years. Civil engineers need an authoritative source of information that reflects the issues that are unique to the field. Comprising chapters selected from the latest research, the textbook is focused on concise and valuable text that is explained with theoretical, practical, and computational aspects. The book supplies the latest concepts, design methodologies, and analytical techniques for mitigating the effects of seismic damage to structures. It discusses the fundamentals of earthquake engineering, explaining the causes of earthquakes and faulting, measurement of earthquakes, and characterisation of seismicity. Subsequent chapters discuss the various types of earthquake damage to structures including recent improvements in earthquake performance, seismic design of buildings and bridges considering various types of construction materials, and performance based seismic design and evaluation of building structures. The book introduces probabilistic approaches to performance-based methodologies as well as an application example of performance-based design. It offers practical tools that are gathered together in a convenient reference for immediate implementation. It is an ideal resource for civil and structural engineers specialising in earthquake engineering.

Earthquake Engineering

Author: Sidney F. Borg
Publisher: World Scientific
ISBN: 9789971504359
Size: 49.24 MB
Format: PDF
View: 2819
Download Read Online
This book is the expanded version of the earlier (first edition) text. It presents new comprehensive rational quantitative theories (utilizing fundamental energy concepts throughout) covering the entire earthquake event from the point of view of the engineer. It starts with a mathematical analysis of an underground mechanism (the earthquake), then proceeds to determinations of the timewise and spacewise variations of the fundamental engineering damage-design parameter, the ground energy. Finally, the new theories are applied to a number of typical (actual) structural and non-structural design problems. Each chapter of the first edition has now been improved and enlarged and new chapters have been added to include recent research by the author and his graduate students.

Earthquake Resistant Structures

Author: Mohiuddin Ali Khan
Publisher: Butterworth-Heinemann
ISBN: 0080949444
Size: 26.64 MB
Format: PDF, Kindle
View: 1694
Download Read Online
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and construction practices and enhance their sustainability during and after seismic events. In this book, Khan explains the latest theory, design applications and Code Provisions. Earthquake-Resistant Structures features seismic design and retrofitting techniques for low and high raise buildings, single and multi-span bridges, dams and nuclear facilities. The author also compares and contrasts various seismic resistant techniques in USA, Russia, Japan, Turkey, India, China, New Zealand, and Pakistan. Written by a world renowned author and educator Seismic design and retrofitting techniques for all structures Tools improve current building and bridge designs Latest methods for building earthquake-resistant structures Combines physical and geophysical science with structural engineering

Elements Of Earthquake Engineering And Structural Dynamics

Author: André Filiatrault
Publisher: Presses inter Polytechnique
ISBN: 2553016492
Size: 29.85 MB
Format: PDF, Docs
View: 7138
Download Read Online
"In order to reduce the seismic risk facing many densely populated regions worldwide, including Canada and the United States, modern earthquake engineering should be more widely applied. But current literature on earthquake engineering may be difficult to grasp for structural engineers who are untrained in seismic design. In addition no single resource addressed seismic design practices in both Canada and the United States until now. Elements of Earthquake Engineering and Structural Dynamics was written to fill the gap. It presents the key elements of earthquake engineering and structural dynamics at an introductory level and gives readers the basic knowledge they need to apply the seismic provisions contained in Canadian and American building codes."--Résumé de l'éditeur.

Seismic Design Of Steel Structures

Author: Victor Gioncu
Publisher: CRC Press
ISBN: 0203848888
Size: 28.49 MB
Format: PDF, ePub, Mobi
View: 5571
Download Read Online
Providing real world applications for different structural types and seismic characteristics, Seismic Design of Steel Structures combines knowledge of seismic behavior of steel structures with the principles of earthquake engineering. This book focuses on seismic design, and concentrates specifically on seismic-resistant steel structures. Drawing on experience from the Northridge to the Tohoku earthquakes, it combines understanding of the seismic behavior of steel structures with the principles of earthquake engineering. The book focuses on the global as well as local behavior of steel structures and their effective seismic-resistant design. It recognises different types of earthquakes, takes into account the especial danger of fire after earthquake, and proposes new bracing and connecting systems for new seismic resistant steel structures, and also for upgrading existing reinforced concrete structures. Includes the results of the extensive use of the DUCTROCT M computer program, which is used for the evaluation of the seismic available ductility, both monotonic and cyclic, for different types of earthquakes Demonstrates good design principles by highlighting the behavior of seismic-resistant steel structures in many applications from around the world Provides a methodological approach, making a clear distinction between strong and low-to-moderate seismic regions This book serves as a reference for structural engineers involved in seismic design, as well as researchers and graduate students of seismic structural analysis and design.

Earthquake Engineering

Author: Charles K. Erdey
Publisher: Wiley
ISBN: 9780470048436
Size: 50.97 MB
Format: PDF, Kindle
View: 3326
Download Read Online
Learn to design code-compliant, earthquake-resistant structures with this practical guide Earthquake Engineering demonstrates how to design structural members and joints for seismic resistance. The text guides readers through dozens of structural designs, documenting how to perform each step, make the necessary calculations, and adhere to relevant design codes. Most other texts on seismic design focus on theory and the construction of idealized structures; this text is a radical departure, presenting actual tested design methodologies that protect structures from the devastation of earthquakes. All the design methods presented by the author comply with the current U.S. building codes. References to these codes are provided throughout the text, helping readers understand how they are integrated into an overall structural design. Everything readers need to create sound designs, from analysis to design implementation, is provided, including: * Dozens of worked problems throughout the text * Complete reference chapters dedicated to matrices, differential equations, and numerical analysis * Latest results of ongoing seismic research, including how these studies are likely to influence future design projects * The latest 2006 IBC, highlighting significant variations from the 2000 and 2003 editions of the code * Detailed coverage of seismic design for steel moment-resisting frame structures (SMRF), as well as braced-frame steel, concrete, masonry, and wood-framed structures This text, with its many worked problems, is ideal for upper-level undergraduates and graduate students. Now that the seismic engineering provisions of the IBC Code apply to the entire United States, this text should also guide practicing engineers not yet exposed to seismic design in designing code-compliant, earthquake-resistant structures.

Computational Structural Dynamics And Earthquake Engineering

Author: Manolis Papadrakakis
Publisher: CRC Press
ISBN: 9780203881637
Size: 24.12 MB
Format: PDF, ePub
View: 5366
Download Read Online
The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynamics, Structural Dynamics and Earthquake Engineering in thirty-five self-contained contributions. The selected state-of-the-art chapters are revised and extended versions of the papers which were presented as plenary, semi-plenary and keynote lectures at the thematic COMPDYN 2007 Conference. This volume will benefit researchers and engineering professionals working on structural dynamics, earthquake engineering and computational mechanics. Readers will get acquainted with advanced computational methods and software tools, which can assist them in tackling complex problems in dynamic/seismic analysis and design. Moreover, it will raise the awareness of important application areas and the social impact of the scientific and technical fields involved.