Emerging Actuator Technologies

Author: José L. Pons
Publisher: John Wiley & Sons
ISBN: 0470091983
Size: 54.53 MB
Format: PDF
View: 3320
Download Read Online
Actuators are devices that convert electrical energy into mechanical work, traditionally used in electrical, pneumatic and hydraulic systems. As the demand for actuator technologies grows in biomedical, prosthetic and orthotic applications, there is an increasing need for complex and sophisticated products that perform efficiently also when scaled to micro and nano domains. Providing a comprehensive overview of actuators for novel applications, this excellent book: * Presents a mechatronic approach to the design, control and integration of a range of technologies covering piezoelectric actuators, shape memory actuators, electro-active polymers, magnetostrictive actuators and electro- and magnetorheological actuators. * Examines the characteristics and performance of emerging actuators upon scaling to micro and nano domains. * Assesses the relative merits of each actuator technology and outlines prospective application fields. Offering a detailed analysis on current advances in the field, this publication will appeal to practising electrical and electronics engineers developing novel actuator systems. Mechanical and automation engineers, computer scientists and researchers will also find this a useful resource.

Experimental Robotics

Author: Oussama Khatib
Publisher: Springer Science & Business Media
ISBN: 3642001955
Size: 55.91 MB
Format: PDF, ePub
View: 5597
Download Read Online
By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neuros- ences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.

Wearable Robots

Author: José L. Pons
Publisher: John Wiley & Sons
ISBN: 0470987650
Size: 31.35 MB
Format: PDF, ePub, Mobi
View: 1946
Download Read Online
A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.

Electromechanical Sensors And Actuators

Author: Ilene J. Busch-Vishniac
Publisher: Springer Science & Business Media
ISBN: 9780387984957
Size: 77.22 MB
Format: PDF, Mobi
View: 6890
Download Read Online
Unlike other treatments of sensors or actuators, this book approaches the devices from the point of view of the fundamental coupling mechanism between the electrical and mechanical behaviour. The principles of operation of the solenoid are the same in both cases, and this book thus treats them together. It begins with a discussion of systems analysis as a tool for modelling transducers, before turning to a detailed discussion of transduction mechanisms. The whole is rounded off by an input/output analysis of transducers.

Micromechatronics

Author: Victor Giurgiutiu
Publisher: CRC Press
ISBN: 1439883106
Size: 44.84 MB
Format: PDF, Docs
View: 988
Download Read Online
Focusing on recent developments in engineering science, enabling hardware, advanced technologies, and software, Micromechatronics: Modeling, Analysis, and Design with MATLAB®, Second Edition provides clear, comprehensive coverage of mechatronic and electromechanical systems. It applies cornerstone fundamentals to the design of electromechanical systems, covers emerging software and hardware, introduces the rigorous theory, examines the design of high-performance systems, and helps develop problem-solving skills. Along with more streamlined material, this edition adds many new sections to existing chapters. New to the Second Edition Updated and extended worked examples along with the associated MATLAB® codes Additional problems and exercises at the end of many chapters New sections on MATLAB New case studies The book explores ways to improve and optimize a broad spectrum of electromechanical systems widely used in industrial, transportation, and power systems. It examines the design and analysis of high-performance mechatronic systems, energy systems, efficient energy conversion, power electronics, controls, induced-strain devices, active sensors, microcontrollers, and motion devices. The text also enables a deep understanding of the multidisciplinary underpinnings of engineering. It can be used for courses in mechatronics, power systems, energy systems, active materials and smart structures, solid-state actuation, structural health monitoring, and applied microcontroller engineering.

Sensors And Actuators

Author: Clarence W. de Silva
Publisher: CRC Press
ISBN: 1466506822
Size: 64.96 MB
Format: PDF, ePub, Docs
View: 5186
Download Read Online
An engineering system contains multiple components that interconnect to perform a specific task. Starting from basic fundamentals through to advanced applications, Sensors and Actuators: Engineering System Instrumentation, Second Edition thoroughly explains the inner workings of an engineering system. The text first provides introductory material—practical procedures and applications in the beginning—and then methodically integrates more advanced techniques, theory, and concepts throughout the book. Emphasizing sensors, transducers, and actuators, the author discusses important aspects of component matching and interconnection, interface between the connected components, signal modification, and signal conditioning/modification. He also addresses functions, physical principles, operation and interaction, and the proper selection and interfacing of these components for various engineering/control applications. This second edition provides a thorough revision of the first and includes new worked examples, new applications, and thoroughly updated as well as entirely new material. In addition, it provides increased coverage of sensor systems technologies and updated coverage of computer tools, including MATLAB®, Simulink, and LabView. What’s New in the Second Edition: A new chapter on estimation from measurements, which includes various practical procedures and applications of estimation through sensed data New material on microelectromechanical systems (MEMS) New material on multisensor data fusion New material on networked sensing and localization Many new problems and worked examples Chapter highlights and summary sheets, for easy reference and recollection Sensors and Actuators: Engineering System Instrumentation, Second Edition provides users from a variety of engineering backgrounds with a complete overview of engineering system components for instrumentation. It presents current techniques, advanced theory and concepts, and addresses relevant design issues, component selection, and practical applications.

Smart Material Systems And Mems

Author: Vijay K. Varadan
Publisher: John Wiley & Sons
ISBN: 0470093625
Size: 71.93 MB
Format: PDF
View: 7615
Download Read Online
Presenting unified coverage of the design and modeling of smart micro- and macrosystems, this book addresses fabrication issues and outlines the challenges faced by engineers working with smart sensors in a variety of applications. Part I deals with the fundamental concepts of a typical smart system and its constituent components. Preliminary fabrication and characterization concepts are introduced before design principles are discussed in detail. Part III presents a comprehensive account of the modeling of smart systems, smart sensors and actuators. Part IV builds upon the fundamental concepts to analyze fabrication techniques for silicon-based MEMS in more detail. Practicing engineers will benefit from the detailed assessment of applications in communications technology, aerospace, biomedical and mechanical engineering. The book provides an essential reference or textbook for graduates following a course in smart sensors, actuators and systems.