Emmy Noether S Wonderful Theorem

Author: Dwight E. Neuenschwander
Publisher: JHU Press
ISBN: 1421422670
Size: 76.56 MB
Format: PDF, ePub, Mobi
View: 3720
Download Read Online
"In the judgment of the most competent living mathematicians, Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began."—Albert Einstein The year was 1915, and the young mathematician Emmy Noether had just settled into Göttingen University when Albert Einstein visited to lecture on his nearly finished general theory of relativity. Two leading mathematicians of the day, David Hilbert and Felix Klein, dug into the new theory with gusto, but had difficulty reconciling it with what was known about the conservation of energy. Knowing of her expertise in invariance theory, they requested Noether’s help. To solve the problem, she developed a novel theorem, applicable across all of physics, which relates conservation laws to continuous symmetries—one of the most important pieces of mathematical reasoning ever developed. Noether’s "first" and "second" theorem was published in 1918. The first theorem relates symmetries under global spacetime transformations to the conservation of energy and momentum, and symmetry under global gauge transformations to charge conservation. In continuum mechanics and field theories, these conservation laws are expressed as equations of continuity. The second theorem, an extension of the first, allows transformations with local gauge invariance, and the equations of continuity acquire the covariant derivative characteristic of coupled matter-field systems. General relativity, it turns out, exhibits local gauge invariance. Noether’s theorem also laid the foundation for later generations to apply local gauge invariance to theories of elementary particle interactions. In Dwight E. Neuenschwander’s new edition of Emmy Noether’s Wonderful Theorem, readers will encounter an updated explanation of Noether’s "first" theorem. The discussion of local gauge invariance has been expanded into a detailed presentation of the motivation, proof, and applications of the "second" theorem, including Noether’s resolution of concerns about general relativity. Other refinements in the new edition include an enlarged biography of Emmy Noether’s life and work, parallels drawn between the present approach and Noether’s original 1918 paper, and a summary of the logic behind Noether’s theorem.

Emmy Noether

Author: M. B. W. Tent
Publisher: CRC Press
ISBN: 1439865345
Size: 55.23 MB
Format: PDF, Mobi
View: 5601
Download Read Online
This book, written primarily for the young adult reader, tells the life story of Emmy Noether, the most important female mathematician of our time. Because no one expected her to grow into an important scientist, the records of her early life are sketchy. After all, it was assumed that she would grow up to be a wife and mother. Instead, she was a genius who chose a distinctive path. The author has woven this charming story of Emmy Noether’s life around the events that appear in the oral and written records, fleshing out the story with details about life in Germany at the time and what we know about how bright children explore mathematics.

Emmy Noether 1882 1935

Author: DICK
Publisher: Springer Science & Business Media
ISBN: 1468405357
Size: 73.95 MB
Format: PDF, ePub, Mobi
View: 4141
Download Read Online
N 1964 at the World's Fair in New York I City one room was dedicated solely to mathematics. The display included a very at tractive and informative mural, about 13 feet long, sponsored by one of the largest com puter manufacturing companies and present ing a brief survey of the history of mathemat ics. Entitled, "Men of Modern Mathematics," it gives an outline of the development of that science from approximately 1000 B. C. to the year of the exhibition. The first centuries of this time span are illustrated by pictures from the history of art and, in particular, architec ture; the period since 1500 is illuminated by portraits of mathematicians, including brief descriptions of their lives and professional achievements. Close to eighty portraits are crowded into a space of about fourteen square feet; among them, only one is of a woman. Her face-mature, intelligent, neither pretty nor handsome-may suggest her love of sci- 1 Emmy Noether ence and creative gift, but certainly reveals a likeable personality and a genuine kindness of heart. It is the portrait of Emmy Noether ( 1882 - 1935), surrounded by the likenesses of such famous men as Joseph Liouville (1809-1882), Georg Cantor (1845-1918), and David Hilbert (1862 -1943). It is accom panied by the following text: Emmy Noether, daughter of the mathemati cian Max, was often called "Der Noether," as if she were a man.

Tensor Calculus For Physics

Author: Dwight E. Neuenschwander
Publisher: JHU Press
ISBN: 142141564X
Size: 48.60 MB
Format: PDF
View: 2763
Download Read Online
Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry. Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism, they encounter the "polarization tensor." However, this piecemeal approach can set students up for misconceptions when they have to learn about tensors in more advanced physics and mathematics studies (e.g., while enrolled in a graduate-level general relativity course or when studying non-Euclidean geometries in a higher mathematics class). Dwight E. Neuenschwander's Tensor Calculus for Physics is a bottom-up approach that emphasizes motivations before providing definitions. Using a clear, step-by-step approach, the book strives to embed the logic of tensors in contexts that demonstrate why that logic is worth pursuing. It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.

The Noether Theorems

Author: Yvette Kosmann-Schwarzbach
Publisher: Springer Science & Business Media
ISBN: 9780387878683
Size: 48.40 MB
Format: PDF, ePub, Docs
View: 7002
Download Read Online
In 1915 and 1916 Emmy Noether was asked by Felix Klein and David Hilbert to assist them in understanding issues involved in any attempt to formulate a general theory of relativity, in particular the new ideas of Einstein. She was consulted particularly over the difficult issue of the form a law of conservation of energy could take in the new theory, and she succeeded brilliantly, finding two deep theorems. But between 1916 and 1950, the theorem was poorly understood and Noether's name disappeared almost entirely. People like Klein and Einstein did little more then mention her name in the various popular or historical accounts they wrote. Worse, earlier attempts which had been eclipsed by Noether's achievements were remembered, and sometimes figure in quick historical accounts of the time. This book carries a translation of Noether's original paper into English, and then describes the strange history of its reception and the responses to her work. Ultimately the theorems became decisive in a shift from basing fundamental physics on conservations laws to basing it on symmetries, or at the very least, in thoroughly explaining the connection between these two families of ideas. The real significance of this book is that it shows very clearly how long it took before mathematicians and physicists began to recognize the seminal importance of Noether's results. This book is thoroughly researched and provides careful documentation of the textbook literature. Kosmann-Schwarzbach has thus thrown considerable light on this slow dance in which the mathematical tools necessary to study symmetry properties and conservation laws were apparently provided long before the orchestra arrives and the party begins.

Symmetry And The Beautiful Universe

Author: Leon M. Lederman
Publisher: Prometheus Books
ISBN: 1615920412
Size: 37.24 MB
Format: PDF, ePub, Mobi
View: 1593
Download Read Online
When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed. From the Trade Paperback edition.

The Science Of Imaging Second Edition

Author: Graham Saxby
Publisher: Taylor & Francis
ISBN: 143981287X
Size: 31.66 MB
Format: PDF, Mobi
View: 1917
Download Read Online
Edited and expanded to keep pace with the digital revolution, the new edition of this highly popular and critically acclaimed work provides a comprehensive exploration of imaging science. Brilliantly written and extensively illustrated, The Science of Imaging: An Introduction, Second Edition covers the fundamental laws of physics as well as the cutting-edge techniques defining current and future directions in the field. Improvements to this Edition Include: A new chapter on astronomical imaging A larger format with a wealth of illustrations Major revisions in the areas of digital imaging and modern technology Updated references with links to a wealth of online resources—including teaching material and expanded information This accessible introduction to the subject takes students on a grand tour of imaging. Starting with the fundamentals of light and basic cameras, the author journeys through television and holography to advanced scientific and medical imaging. He highlights essential formulas, while keeping the complex mathematics to a minimum. Copiously illustrated with a wealth of examples and a 16-page color insert, the text covers optics, imaging systems, materials, and image interpretation and creation in a manner that makes it easy to understand. Praise for the critically acclaimed First Edition: It's the best book I have read on the subject at this level. —Ron Graham, RPS Journal ... every student should read it, every photographer should own it, and every lecturer and journalist should know its contents inside out. —Jon Tarrant, British Journal of Photography

Variational Principles

Author: B. L. Moiseiwitsch
Publisher: Courier Corporation
ISBN: 0486150496
Size: 32.41 MB
Format: PDF, ePub, Mobi
View: 7661
Download Read Online
This text shows how variational principles are used to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities that arise in the theory of scattering. 1966 edition.

Euler S Gem

Author: David S. Richeson
Publisher: Princeton University Press
ISBN: 9781400838561
Size: 26.49 MB
Format: PDF, Mobi
View: 7345
Download Read Online
Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.