Handbook Of Mixed Membership Models And Their Applications

Author: Edoardo M. Airoldi
Publisher: CRC Press
ISBN: 1466504080
Size: 53.67 MB
Format: PDF, ePub
View: 4089
Download Read Online
In response to scientific needs for more diverse and structured explanations of statistical data, researchers have discovered how to model individual data points as belonging to multiple groups. Handbook of Mixed Membership Models and Their Applications shows you how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology. Through examples using real data sets, you’ll discover how to characterize complex multivariate data in: Studies involving genetic databases Patterns in the progression of diseases and disabilities Combinations of topics covered by text documents Political ideology or electorate voting patterns Heterogeneous relationships in networks, and much more The handbook spans more than 20 years of the editors’ and contributors’ statistical work in the field. Top researchers compare partial and mixed membership models, explain how to interpret mixed membership, delve into factor analysis, and describe nonparametric mixed membership models. They also present extensions of the mixed membership model for text analysis, sequence and rank data, and network data as well as semi-supervised mixed membership models.

Handbook Of Statistical Methods And Analyses In Sports

Author: Jim Albert
Publisher: CRC Press
ISBN: 1351678965
Size: 55.31 MB
Format: PDF, Kindle
View: 3819
Download Read Online
This handbook will provide both overviews of statistical methods in sports and in-depth treatment of critical problems and challenges confronting statistical research in sports. The material in the handbook will be organized by major sport (baseball, football, hockey, basketball, and soccer) followed by a section on other sports and general statistical design and analysis issues that are common to all sports. This handbook has the potential to become the standard reference for obtaining the necessary background to conduct serious statistical analyses for sports applications and to appreciate scholarly work in this expanding area.

From Social Data Mining And Analysis To Prediction And Community Detection

Author: Mehmet Kaya
Publisher: Springer
ISBN: 3319513672
Size: 33.88 MB
Format: PDF
View: 6794
Download Read Online
This book presents the state-of-the-art in various aspects of analysis and mining of online social networks. Within the broader context of online social networks, it focuses on important and upcoming topics of social network analysis and mining such as the latest in sentiment trends research and a variety of techniques for community detection and analysis. The book collects chapters that are expanded versions of the best papers presented at the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM’2015), which was held in Paris, France in August 2015. All papers have been peer reviewed and checked carefully for overlap with the literature. The book will appeal to students and researchers in social network analysis/mining and machine learning.

Handbook Of Neuroimaging Data Analysis

Author: Hernando Ombao
Publisher: CRC Press
ISBN: 1315356201
Size: 21.61 MB
Format: PDF
View: 609
Download Read Online
This book explores various state-of-the-art aspects behind the statistical analysis of neuroimaging data. It examines the development of novel statistical approaches to model brain data. Designed for researchers in statistics, biostatistics, computer science, cognitive science, computer engineering, biomedical engineering, applied mathematics, physics, and radiology, the book can also be used as a textbook for graduate-level courses in statistics and biostatistics or as a self-study reference for Ph.D. students in statistics, biostatistics, psychology, neuroscience, and computer science.

Longitudinal Data Analysis

Author: Garrett Fitzmaurice
Publisher: CRC Press
ISBN: 9781420011579
Size: 69.47 MB
Format: PDF, Kindle
View: 5516
Download Read Online
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory and applications. It also focuses on the assorted challenges that arise in analyzing longitudinal data. After discussing historical aspects, leading researchers explore four broad themes: parametric modeling, nonparametric and semiparametric methods, joint models, and incomplete data. Each of these sections begins with an introductory chapter that provides useful background material and a broad outline to set the stage for subsequent chapters. Rather than focus on a narrowly defined topic, chapters integrate important research discussions from the statistical literature. They seamlessly blend theory with applications and include examples and case studies from various disciplines. Destined to become a landmark publication in the field, this carefully edited collection emphasizes statistical models and methods likely to endure in the future. Whether involved in the development of statistical methodology or the analysis of longitudinal data, readers will gain new perspectives on the field.

Handbook Of Discrete Valued Time Series

Author: Richard A. Davis
Publisher: CRC Press
ISBN: 1466577746
Size: 18.23 MB
Format: PDF, Docs
View: 137
Download Read Online
Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed can be applied to other types of discrete-valued time series, such as binary-valued or categorical time series. Explore a Balanced Treatment of Frequentist and Bayesian Perspectives Accessible to graduate-level students who have taken an elementary class in statistical time series analysis, the book begins with the history and current methods for modeling and analyzing univariate count series. It next discusses diagnostics and applications before proceeding to binary and categorical time series. The book then provides a guide to modern methods for discrete-valued spatio-temporal data, illustrating how far modern applications have evolved from their roots. The book ends with a focus on multivariate and long-memory count series. Get Guidance from Masters in the Field Written by a cohesive group of distinguished contributors, this handbook provides a unified account of the diverse techniques available for observation- and parameter-driven models. It covers likelihood and approximate likelihood methods, estimating equations, simulation methods, and a Bayesian approach for model fitting.

Missing Data In Longitudinal Studies

Author: Michael J. Daniels
Publisher: CRC Press
ISBN: 9781420011180
Size: 32.84 MB
Format: PDF, ePub, Docs
View: 7761
Download Read Online
Drawing from the authors’ own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ several data sets throughout that cover a range of study designs, variable types, and missing data issues. The book first reviews modern approaches to formulate and interpret regression models for longitudinal data. It then discusses key ideas in Bayesian inference, including specifying prior distributions, computing posterior distribution, and assessing model fit. The book carefully describes the assumptions needed to make inferences about a full-data distribution from incompletely observed data. For settings with ignorable dropout, it emphasizes the importance of covariance models for inference about the mean while for nonignorable dropout, the book studies a variety of models in detail. It concludes with three case studies that highlight important features of the Bayesian approach for handling nonignorable missingness. With suggestions for further reading at the end of most chapters as well as many applications to the health sciences, this resource offers a unified Bayesian approach to handle missing data in longitudinal studies.

Nonparametric And Semiparametric Models

Author: Wolfgang Härdle
Publisher: Springer Science & Business Media
ISBN: 364217146X
Size: 47.68 MB
Format: PDF, Docs
View: 1870
Download Read Online
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.

The R Book

Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 1118448960
Size: 57.23 MB
Format: PDF, Mobi
View: 762
Download Read Online
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

Handbook Of Survival Analysis

Author: John P. Klein
Publisher: CRC Press
ISBN: 146655567X
Size: 61.58 MB
Format: PDF, ePub
View: 3101
Download Read Online
Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians