Introduction To Linear Optimization And Extensions With Matlab

Author: Roy H. Kwon
Publisher: CRC Press
ISBN: 1482204347
Size: 57.33 MB
Format: PDF, ePub, Mobi
View: 2424
Download Read Online
Filling the need for an introductory book on linear programming that discusses the important ways to mitigate parameter uncertainty, Introduction to Linear Optimization and Extensions with MATLAB® provides a concrete and intuitive yet rigorous introduction to modern linear optimization. In addition to fundamental topics, the book discusses current linear optimization technologies such as predictor-path following interior point methods for both linear and quadratic optimization as well as the inclusion of linear optimization of uncertainty i.e. stochastic programming with recourse and robust optimization. The author introduces both stochastic programming and robust optimization as frameworks to deal with parameter uncertainty. The author’s unusual approach—developing these topics in an introductory book—highlights their importance. Since most applications require decisions to be made in the face of uncertainty, the early introduction of these topics facilitates decision making in real world environments. The author also includes applications and case studies from finance and supply chain management that involve the use of MATLAB. Even though there are several LP texts in the marketplace, most do not cover data uncertainty using stochastic programming and robust optimization techniques. Most emphasize the use of MS Excel, while this book uses MATLAB which is the primary tool of many engineers, including financial engineers. The book focuses on state-of-the-art methods for dealing with parameter uncertainty in linear programming, rigorously developing theory and methods. But more importantly, the author’s meticulous attention to developing intuition before presenting theory makes the material come alive.

Theory Of Linear And Integer Programming

Author: Alexander Schrijver
Publisher: John Wiley & Sons
ISBN: 9780471982326
Size: 11.55 MB
Format: PDF, ePub, Docs
View: 2064
Download Read Online
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index

Understanding And Using Linear Programming

Author: Jiri Matousek
Publisher: Springer Science & Business Media
ISBN: 3540307176
Size: 66.69 MB
Format: PDF, Docs
View: 2366
Download Read Online
The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".

Nonlinear Programming

Author: Dimitri P. Bertsekas
Publisher:
ISBN: 9781886529052
Size: 43.95 MB
Format: PDF, ePub
View: 819
Download Read Online
The third edition of the book is a thoroughly rewritten version of the 1999 2nd edition. New material was included, some of the old material was discarded, and a large portion of the remainder was reorganized or revised. This book provides a comprehensive and accessible presentation of algorithms for solving continuous optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. It places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book was developed through instruction at MIT, focuses on nonlinear and other types of optimization: iterative algorithms for constrained and unconstrained optimization, Lagrange multipliers and duality, large scale problems, and the interface between continuous and discrete optimization. Among its special features, the book: 1) provides extensive coverage of iterative optimization methods within a unifying framework 2) provides a detailed treatment of interior point methods for linear programming 3) covers in depth duality theory from both a variational and a geometrical/convex analysis point of view 4) includes much new material on a number of topics, such as neural network training, large-scale optimization, signal processing, machine learning, and optimal control 5) includes a large number of examples and exercises detailed solutions of many of which are posted on the internet.

Linear Programming And Its Applications

Author: James K. Strayer
Publisher: Springer Science & Business Media
ISBN: 1461210097
Size: 80.60 MB
Format: PDF, ePub
View: 3816
Download Read Online
Linear Programming and Its Applications is intended for a first course in linear programming, preferably in the sophomore or junior year of the typical undergraduate curriculum. The emphasis throughout the book is on linear programming skills via the algorithmic solution of small-scale problems, both in the general sense and in the specific applications where these problems naturally occur. The book arose from lecture notes prepared during the years 1985-1987 while I was a graduate assistant in the Department of Mathematics at The Pennsylvania State University. I used a preliminary draft in a Methods of Management Science class in the spring semester of 1988 at Lock Haven University. Having been extensively tried and tested in the classroom at various stages of its development, the book reflects many modifications either suggested directly by students or deemed appropriate from responses by students in the classroom setting. My primary aim in writing the book was to address common errors and difficulties as clearly and effectively as I could.

Constrained Optimization And Lagrange Multiplier Methods

Author: Dimitri P. Bertsekas
Publisher: Academic Press
ISBN: 148326047X
Size: 43.46 MB
Format: PDF, ePub
View: 6764
Download Read Online
Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.

Author: Dimitri P. Bertsekas
Publisher: 清华大学出版社有限公司
ISBN: 9787302123286
Size: 57.47 MB
Format: PDF, ePub, Docs
View: 536
Download Read Online
国际知名大学原版教材信息技术学科与电气工程学科系列 30

Convex Optimization

Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Size: 43.32 MB
Format: PDF
View: 1683
Download Read Online
A comprehensive introduction to the tools, techniques and applications of convex optimization.