Ionized Physical Vapor Deposition

Author:
Publisher: Academic Press
ISBN: 008054293X
Size: 71.78 MB
Format: PDF
View: 1701
Download Read Online
This volume provides the first comprehensive look at a pivotal new technology in integrated circuit fabrication. For some time researchers have sought alternate processes for interconnecting the millions of transistors on each chip because conventional physical vapor deposition can no longer meet the specifications of today's complex integrated circuits. Out of this research, ionized physical vapor deposition has emerged as a premier technology for the deposition of thin metal films that form the dense interconnect wiring on state-of-the-art microprocessors and memory chips. For the first time, the most recent developments in thin film deposition using ionized physical vapor deposition (I-PVD) are presented in a single coherent source. Readers will find detailed descriptions of relevant plasma source technology, specific deposition systems, and process recipes. The tools and processes covered include DC hollow cathode magnetrons, RF inductively coupled plasmas, and microwave plasmas that are used for depositing technologically important materials such as copper, tantalum, titanium, TiN, and aluminum. In addition, this volume describes the important physical processes that occur in I-PVD in a simple and concise way. The physical descriptions are followed by experimentally-verified numerical models that provide in-depth insight into the design and operation I-PVD tools. Practicing process engineers, research and development scientists, and students will find that this book's integration of tool design, process development, and fundamental physical models make it an indispensable reference. Key Features: The first comprehensive volume on ionized physical vapor deposition Combines tool design, process development, and fundamental physical understanding to form a complete picture of I-PVD Emphasizes practical applications in the area of IC fabrication and interconnect technology Serves as a guide to select the most appropriate technology for any deposition application *This single source saves time and effort by including comprehensive information at one's finger tips *The integration of tool design, process development, and fundamental physics allows the reader to quickly understand all of the issues important to I-PVD *The numerous practical applications assist the working engineer to select and refine thin film processes

Principles Of Vapor Deposition Of Thin Films

Author: Professor K.S. K.S Sree Harsha
Publisher: Elsevier
ISBN: 9780080480312
Size: 78.73 MB
Format: PDF, ePub
View: 7777
Download Read Online
The goal of producing devices that are smaller, faster, more functional, reproducible, reliable and economical has given thin film processing a unique role in technology. Principles of Vapor Deposition of Thin Films brings in to one place a diverse amount of scientific background that is considered essential to become knowledgeable in thin film depostition techniques. Its ultimate goal as a reference is to provide the foundation upon which thin film science and technological innovation are possible. * Offers detailed derivation of important formulae. * Thoroughly covers the basic principles of materials science that are important to any thin film preparation. * Careful attention to terminologies, concepts and definitions, as well as abundance of illustrations offer clear support for the text.

Copper Interconnect Technology

Author: Tapan Gupta
Publisher: Springer Science & Business Media
ISBN: 9781441900760
Size: 64.20 MB
Format: PDF, ePub
View: 6755
Download Read Online
Since overall circuit performance has depended primarily on transistor properties, previous efforts to enhance circuit and system speed were focused on transistors as well. During the last decade, however, the parasitic resistance, capacitance, and inductance associated with interconnections began to influence circuit performance and will be the primary factors in the evolution of nanoscale ULSI technology. Because metallic conductivity and resistance to electromigration of bulk copper (Cu) are better than aluminum, use of copper and low-k materials is now prevalent in the international microelectronics industry. As the feature size of the Cu-lines forming interconnects is scaled, resistivity of the lines increases. At the same time electromigration and stress-induced voids due to increased current density become significant reliability issues. Although copper/low-k technology has become fairly mature, there is no single book available on the promise and challenges of these next-generation technologies. In this book, a leader in the field describes advanced laser systems with lower radiation wavelengths, photolithography materials, and mathematical modeling approaches to address the challenges of Cu-interconnect technology.

Physical Vapor Deposition Of Thin Films

Author: John E. Mahan
Publisher: Wiley-Interscience
ISBN: 9780471330011
Size: 59.33 MB
Format: PDF, Kindle
View: 5040
Download Read Online
A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

Cu In1 Xgax Se2 Based Thin Film Solar Cells

Author: Subba Ramaiah Kodigala
Publisher: Academic Press
ISBN: 9780080920320
Size: 65.37 MB
Format: PDF, ePub, Docs
View: 3667
Download Read Online
Cu(In1-xGax)Se2 Based Thin Film Solar Cells provides valuable contents about the fabrication and characterization of chalcopyrite Cu(In1-xGax)Se2 based thin film solar cells and modules. The growth of chalcopyrite Cu(In1-xGax)(S1-ySey)2 absorbers, buffers, window layers, antireflection coatings, and finally metallic grids, which are the sole components of solar cells, is clearly illustrated. The absorber, which contains multiple elements, segregates secondary phases if the growth conditions are not well optimized i.e., the main drawback in the fabrication of solar cells. More importantly the solutions for the growth of thin films are given in detail. The properties of all the individual layers and single crystals including solar cells analyzed by different characterization techniques such as SEM, AFM, XPS, AES, TEM, XRD, optical, photoluminescence, and Raman spectroscopy are explicitly demonstrated. The electrical analyses such as conductivities, Hall mobilities, deep level transient spectroscopy measurements etc., provide a broad picture to understand thin films or single crystals and their solar cells. The book clearly explains the working principle of energy conversion from solar to electrical with basic sciences for the chalcopyrite based thin film solar cells. Also, it demonstrates important criteria on how to enhance efficiency of the solar cells and modules. The effect of environmental factors such as temperature, humidity, aging etc., on the devices is mentioned by citing several examples. Illustrates a number of growth techniques to prepare thin film layers for solar cells Discusses characterization techniques such as XRD, TEM, XPS, AFM, SEM, PL, CL, Optical measurements, and Electrical measurements Includes I-V, C-V measurements illustrations Provides analysis of solar cell efficiency Presents current trends in thin film solar cells research and marketing

Handbook Of Thin Film Deposition

Author: Krishna Seshan
Publisher: William Andrew
ISBN: 1437778739
Size: 63.83 MB
Format: PDF, Kindle
View: 2522
Download Read Online
Resumen: The 2nd edition contains new chapters on contamination and contamination control that describe the basics and the issues. Another new chapter on meteorology explains the growth of sophisticated, automatic tools capable of measuring thickness and spacing of sub-micron dimensions. The book also covers PVD, laser and e-beam assisted deposition, MBE, and ion beam methods to bring together physical vapor deposition techniques. Two entirely new areas are focused on: chemical mechanical polishing, which helps attain the flatness that is required by modern lithography methods, and new materials used for interconnect dielectric materials, specifically organic polyimide materials.

Handbook Of Physical Vapor Deposition Pvd Processing

Author: Donald M. Mattox
Publisher: William Andrew
ISBN: 0815520387
Size: 78.75 MB
Format: PDF, ePub, Mobi
View: 5870
Download Read Online
This updated version of the popular handbook further explains all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the new edition remains on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications, with additional information to support the original material. The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called "war stories", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language. Fully revised and updated to include the latest developments in PVD process technology ‘War stories’ drawn from the author’s extensive experience emphasize important points in development and manufacturing Appendices include listings of periodicals and professional societies, terms and acronyms, and material on transferring technology between R&D and manufacturing

The Foundations Of Vacuum Coating Technology

Author: D. M. Mattox
Publisher: Springer Science & Business Media
ISBN: 9783540204107
Size: 26.82 MB
Format: PDF, Mobi
View: 1751
Download Read Online
The Foundations of Vacuum Coating Technology is a concise review of the developments that have led to the wide variety of applications of this technology. This book is a must for materials scientists and engineers working with vacuum coating in the invention of new technologies or applications in all industries. With over 370 references, this is an excellent starting point for those who don’t want to reinvent the wheel. In particular, the book is a valuable reference for those interested in researching proposed or existing patents. This unique book provides a starting point for more in-depth surveys of past and recent work in all aspects of vacuum coating. The author uses his extensive knowledge of the subject to draw comparisons and place the information into the proper context. This is particularly important for the patent literature where the terminology does not always match industry jargon. A section of acronyms for vacuum coating and glossary of terms at the end of the book are critical additions to the information every reader needs.

Metallurgical Coatings And Thin Films 1991

Author: G.E. McGuire
Publisher: Elsevier
ISBN: 0444599932
Size: 66.76 MB
Format: PDF, ePub
View: 2000
Download Read Online
The contributions in this two-volume set represent the work of over two hundred international researchers from universities, government laboratories and industry, with diverse backgrounds and interests in a wide range of coatings and thin film processes. The two hundred and six papers attest to the fact that Metallurgical Coatings is a rapidly growing field attracting experts from the large materials, scientific and technical community. The papers will be a useful and dynamic tool for those wishing to increase their knowledge on metallurgical coatings, as well as providing a guide to recent literature in this field.

Materials Science Of Thin Films

Author: Milton Ohring
Publisher: Elsevier
ISBN: 0080491782
Size: 47.62 MB
Format: PDF, ePub, Docs
View: 4672
Download Read Online
This is the first book that can be considered a textbook on thin film science, complete with exercises at the end of each chapter. Ohring has contributed many highly regarded reference books to the AP list, including Reliability and Failure of Electronic Materials and the Engineering Science of Thin Films. The knowledge base is intended for science and engineering students in advanced undergraduate or first-year graduate level courses on thin films and scientists and engineers who are entering or require an overview of the field. Since 1992, when the book was first published, the field of thin films has expanded tremendously, especially with regard to technological applications. The second edition will bring the book up-to-date with regard to these advances. Most chapters have been greatly updated, and several new chapters have been added.