Statistical Models

Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 9781139477314
Size: 11.37 MB
Format: PDF, Docs
View: 4739
Download Read Online
This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.

Statistical Models

Author: David Freedman
Publisher: Cambridge University Press
ISBN: 9780521854832
Size: 80.34 MB
Format: PDF, ePub, Mobi
View: 4793
Download Read Online
This lively and engaging textbook provides the knowledge required to read empirical papers in the social and health sciences, as well as the techniques needed to build statistical models. The author explains the basic ideas of association and regression, and describes the current models that link these ideas to causality. He focuses on applications of linear models, including generalized least squares and two-stage least squares. The bootstrap is developed as a technique for estimating bias and computing standard errors. Careful attention is paid to the principles of statistical inference. There is background material on study design, bivariate regression, and matrix algebra. To develop technique, there are computer labs, with sample computer programs. The book's discussion is organized around published studies, as are the numerous exercises - many of which have answers included. Relevant papers reprinted at the back of the book are thoroughly appraised by the author.

Statistical Models And Causal Inference

Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 0521195004
Size: 70.81 MB
Format: PDF, ePub
View: 5681
Download Read Online
David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.

Statistical Models And Methods For Financial Markets

Author: Tze Leung Lai
Publisher: Springer Science & Business Media
ISBN: 0387778276
Size: 61.20 MB
Format: PDF, ePub, Mobi
View: 6613
Download Read Online
The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.

Statistical Models

Author: A. C. Davison
Publisher: Cambridge University Press
ISBN: 1139437410
Size: 29.66 MB
Format: PDF, Kindle
View: 814
Download Read Online
Models and likelihood are the backbone of modern statistics. This 2003 book gives an integrated development of these topics that blends theory and practice, intended for advanced undergraduate and graduate students, researchers and practitioners. Its breadth is unrivaled, with sections on survival analysis, missing data, Markov chains, Markov random fields, point processes, graphical models, simulation and Markov chain Monte Carlo, estimating functions, asymptotic approximations, local likelihood and spline regressions as well as on more standard topics such as likelihood and linear and generalized linear models. Each chapter contains a wide range of problems and exercises. Practicals in the S language designed to build computing and data analysis skills, and a library of data sets to accompany the book, are available over the Web.

Applied Statistical Modeling And Data Analytics

Author: Srikanta Mishra
Publisher: Elsevier
ISBN: 0128032804
Size: 67.25 MB
Format: PDF, Docs
View: 1746
Download Read Online
Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains Written by practitioners for practitioners Presents an easy to follow narrative which progresses from simple concepts to more challenging ones Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications

Statistical Modelling For Social Researchers

Author: Roger Tarling
Publisher: Routledge
ISBN: 1134061072
Size: 67.69 MB
Format: PDF, Mobi
View: 4809
Download Read Online
This book explains the principles and theory of statistical modelling in an intelligible way for the non-mathematical social scientist looking to apply statistical modelling techniques in research. The book also serves as an introduction for those wishing to develop more detailed knowledge and skills in statistical modelling. Rather than present a limited number of statistical models in great depth, the aim is to provide a comprehensive overview of the statistical models currently adopted in social research, in order that the researcher can make appropriate choices and select the most suitable model for the research question to be addressed. To facilitate application, the book also offers practical guidance and instruction in fitting models using SPSS and Stata, the most popular statistical computer software which is available to most social researchers. Instruction in using MLwiN is also given. Models covered in the book include; multiple regression, binary, multinomial and ordered logistic regression, log-linear models, multilevel models, latent variable models (factor analysis), path analysis and simultaneous equation models and models for longitudinal data and event histories. An accompanying website hosts the datasets and further exercises in order that the reader may practice developing statistical models. An ideal tool for postgraduate social science students, research students and practicing social researchers in universities, market research, government social research and the voluntary sector.

Statistical Matching

Author: Marcello D'Orazio
Publisher: John Wiley & Sons
ISBN: 0470023546
Size: 68.18 MB
Format: PDF, Kindle
View: 1265
Download Read Online
There is more statistical data produced in today’s modern society than ever before. This data is analysed and cross-referenced for innumerable reasons. However, many data sets have no shared element and are harder to combine and therefore obtain any meaningful inference from. Statistical matching allows just that; it is the art of combining information from different sources (particularly sample surveys) that contain no common unit. In response to modern influxes of data, it is an area of rapidly growing interest and complexity. Statistical Matching: Theory and Practice introduces the basics of statistical matching, before going on to offer a detailed, up-to-date overview of the methods used and an examination of their practical applications. Presents a unified framework for both theoretical and practical aspects of statistical matching. Provides a detailed description covering all the steps needed to perform statistical matching. Contains a critical overview of the available statistical matching methods. Discusses all the major issues in detail, such as the Conditional Independence Assumption and the assessment of uncertainty. Includes numerous examples and applications, enabling the reader to apply the methods in their own work. Features an appendix detailing algorithms written in the R language. Statistical Matching: Theory and Practice presents a comprehensive exploration of an increasingly important area. Ideal for researchers in national statistics institutes and applied statisticians, it will also prove to be an invaluable text for scientists and researchers from all disciplines engaged in the multivariate analysis of data collected from different sources.

The Statistical Mechanics Of Financial Markets

Author: Johannes Voit
Publisher: Springer Science & Business Media
ISBN: 3662044234
Size: 48.18 MB
Format: PDF
View: 1972
Download Read Online
A careful examination of the interaction between physics and finance. It takes a look at the 100-year-long history of co-operation between the two fields and goes on to provide new research results on capital markets - taken from the field of statistical physics. The random walk model, well known in physics, is one good example of where the two disciplines meet. In the world of finance it is the basic model upon which the Black-Scholes theory of option pricing and hedging has been built. The underlying assumptions are discussed using empirical financial data and analogies to physical models such as fluid flows, turbulence, or superdiffusion. On this basis, new theories of derivative pricing and risk control can be formulated.

Statistical Optimization For Geometric Computation

Author: Kenichi Kanatani
Publisher: Courier Corporation
ISBN: 0486443086
Size: 52.29 MB
Format: PDF, Mobi
View: 6064
Download Read Online
This text for graduate students discusses the mathematical foundations of statistical inference for building three-dimensional models from image and sensor data that contain noise--a task involving autonomous robots guided by video cameras and sensors. The text employs a theoretical accuracy for the optimization procedure, which maximizes the reliability of estimations based on noise data. The numerous mathematical prerequisites for developing the theories are explained systematically in separate chapters. These methods range from linear algebra, optimization, and geometry to a detailed statistical theory of geometric patterns, fitting estimates, and model selection. In addition, examples drawn from both synthetic and real data demonstrate the insufficiencies of conventional procedures and the improvements in accuracy that result from the use of optimal methods.