Sub Riemannian Geometry

Author: Ovidiu Calin
Publisher:
ISBN: 9781299707320
Size: 63.76 MB
Format: PDF, Mobi
View: 6900
Download Read Online
A comprehensive text and reference on sub-Riemannian and Heisenberg manifolds using a novel and robust variational approach.

Partial Differential Equations And Spectral Theory

Author: Michael Demuth
Publisher: Springer Science & Business Media
ISBN: 9783034800242
Size: 36.71 MB
Format: PDF, ePub, Mobi
View: 1163
Download Read Online
This volume collects six articles on selected topics at the frontier between partial differential equations and spectral theory, written by leading specialists in their respective field. The articles focus on topics that are in the center of attention of current research, with original contributions from the authors. They are written in a clear expository style that makes them accessible to a broader audience. The articles contain a detailed introduction and discuss recent progress, provide additional motivation, and develop the necessary tools. Moreover, the authors share their views on future developments, hypotheses, and unsolved problems.

An Invitation To Hypoelliptic Operators And H Rmander S Vector Fields

Author: Marco Bramanti
Publisher: Springer Science & Business Media
ISBN: 3319020870
Size: 33.62 MB
Format: PDF
View: 2311
Download Read Online
​Hörmander's operators are an important class of linear elliptic-parabolic degenerate partial differential operators with smooth coefficients, which have been intensively studied since the late 1960s and are still an active field of research. This text provides the reader with a general overview of the field, with its motivations and problems, some of its fundamental results, and some recent lines of development.

Heat Kernels For Elliptic And Sub Elliptic Operators

Author: Ovidiu Calin
Publisher: Springer Science & Business Media
ISBN: 9780817649951
Size: 63.51 MB
Format: PDF, ePub, Mobi
View: 1014
Download Read Online
This monograph is a unified presentation of several theories of finding explicit formulas for heat kernels for both elliptic and sub-elliptic operators. These kernels are important in the theory of parabolic operators because they describe the distribution of heat on a given manifold as well as evolution phenomena and diffusion processes. Heat Kernels for Elliptic and Sub-elliptic Operators is an ideal reference for graduate students, researchers in pure and applied mathematics, and theoretical physicists interested in understanding different ways of approaching evolution operators.

Excursions In Harmonic Analysis Volume 2

Author: Travis D Andrews
Publisher: Springer Science & Business Media
ISBN: 0817683798
Size: 40.55 MB
Format: PDF, ePub
View: 4161
Download Read Online
The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I · Sampling Theory · Remote Sensing · Mathematics of Data Processing · Applications of Data Processing Volume II · Measure Theory · Filtering · Operator Theory · Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.

Encyclopaedia Of Mathematics

Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9781556080036
Size: 63.58 MB
Format: PDF, ePub, Docs
View: 1307
Download Read Online
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

Sub Riemannian Geometry And Optimal Transport

Author: Ludovic Rifford
Publisher: Springer Science & Business Media
ISBN: 331904804X
Size: 55.38 MB
Format: PDF, ePub, Docs
View: 105
Download Read Online
The book provides an introduction to sub-Riemannian geometry and optimal transport and presents some of the recent progress in these two fields. The text is completely self-contained: the linear discussion, containing all the proofs of the stated results, leads the reader step by step from the notion of distribution at the very beginning to the existence of optimal transport maps for Lipschitz sub-Riemannian structure. The combination of geometry presented from an analytic point of view and of optimal transport, makes the book interesting for a very large community. This set of notes grew from a series of lectures given by the author during a CIMPA school in Beirut, Lebanon.

The Theory Of Sprays And Finsler Spaces With Applications In Physics And Biology

Author: P.L. Antonelli
Publisher: Springer Science & Business Media
ISBN: 9401581940
Size: 11.17 MB
Format: PDF, ePub, Mobi
View: 5609
Download Read Online
The present book has been written by two mathematicians and one physicist: a pure mathematician specializing in Finsler geometry (Makoto Matsumoto), one working in mathematical biology (Peter Antonelli), and a mathematical physicist specializing in information thermodynamics (Roman Ingarden). The main purpose of this book is to present the principles and methods of sprays (path spaces) and Finsler spaces together with examples of applications to physical and life sciences. It is our aim to write an introductory book on Finsler geometry and its applications at a fairly advanced level. It is intended especially for graduate students in pure mathemat ics, science and applied mathematics, but should be also of interest to those pure "Finslerists" who would like to see their subject applied. After more than 70 years of relatively slow development Finsler geometry is now a modern subject with a large body of theorems and techniques and has math ematical content comparable to any field of modern differential geometry. The time has come to say this in full voice, against those who have thought Finsler geometry, because of its computational complexity, is only of marginal interest and with prac tically no interesting applications. Contrary to these outdated fossilized opinions, we believe "the world is Finslerian" in a true sense and we will try to show this in our application in thermodynamics, optics, ecology, evolution and developmental biology. On the other hand, while the complexity of the subject has not disappeared, the modern bundle theoretic approach has increased greatly its understandability.

Encyclopedia Of Distances

Author: Michel Marie Deza
Publisher: Springer
ISBN: 3662528444
Size: 43.33 MB
Format: PDF, Kindle
View: 6660
Download Read Online
This 4-th edition of the leading reference volume on distance metrics is characterized by updated and rewritten sections on some items suggested by experts and readers, as well a general streamlining of content and the addition of essential new topics. Though the structure remains unchanged, the new edition also explores recent advances in the use of distances and metrics for e.g. generalized distances, probability theory, graph theory, coding theory, data analysis. New topics in the purely mathematical sections include e.g. the Vitanyi multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi-Hamming metric, Taneja distance, spectral semimetric between graphs, channel metrization, and Maryland bridge distance. The multidisciplinary sections have also been supplemented with new topics, including: dynamic time wrapping distance, memory distance, allometry, atmospheric depth, elliptic orbit distance, VLBI distance measurements, the astronomical system of units, and walkability distance. Leaving aside the practical questions that arise during the selection of a ‘good’ distance function, this work focuses on providing the research community with an invaluable comprehensive listing of the main available distances. As well as providing standalone introductions and definitions, the encyclopedia facilitates swift cross-referencing with easily navigable bold-faced textual links to core entries. In addition to distances themselves, the authors have collated numerous fascinating curiosities in their Who’s Who of metrics, including distance-related notions and paradigms that enable applied mathematicians in other sectors to deploy research tools that non-specialists justly view as arcane. In expanding access to these techniques, and in many cases enriching the context of distances themselves, this peerless volume is certain to stimulate fresh research.