The Frailty Model

Author: Luc Duchateau
Publisher: Springer Science & Business Media
ISBN: 038772835X
Size: 79.59 MB
Format: PDF, Kindle
View: 4723
Download Read Online
Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.

Analysis Of Multivariate Survival Data

Author: Philip Hougaard
Publisher: Springer Science & Business Media
ISBN: 1461213045
Size: 32.86 MB
Format: PDF, ePub, Docs
View: 3568
Download Read Online
Survival data or more general time-to-event data occur in many areas, including medicine, biology, engineering, economics, and demography, but previously standard methods have requested that all time variables are univariate and independent. This book extends the field by allowing for multivariate times. As the field is rather new, the concepts and the possible types of data are described in detail. Four different approaches to the analysis of such data are presented from an applied point of view.

Modeling Survival Data Extending The Cox Model

Author: Terry M. Therneau
Publisher: Springer Science & Business Media
ISBN: 1475732945
Size: 76.81 MB
Format: PDF
View: 2304
Download Read Online
This book is for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyze multiple/correlated event data using marginal and random effects. The focus is on actual data examples, the analysis and interpretation of results, and computation. The book shows how these new methods can be implemented in SAS and S-Plus, including computer code, worked examples, and data sets.

Survival And Event History Analysis

Author: Odd Aalen
Publisher: Springer Science & Business Media
ISBN: 038768560X
Size: 67.80 MB
Format: PDF, Kindle
View: 2200
Download Read Online
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.

Survival Analysis

Author: David G. Kleinbaum
Publisher: Springer Science & Business Media
ISBN: 0387291504
Size: 33.24 MB
Format: PDF, ePub, Mobi
View: 3461
Download Read Online
An excellent introduction for all those coming to the subject for the first time. New material has been added to the second edition and the original six chapters have been modified. The previous edition sold 9500 copies world wide since its release in 1996. Based on numerous courses given by the author to students and researchers in the health sciences and is written with such readers in mind. Provides a "user-friendly" layout and includes numerous illustrations and exercises. Written in such a way so as to enable readers learn directly without the assistance of a classroom instructor. Throughout, there is an emphasis on presenting each new topic backed by real examples of a survival analysis investigation, followed up with thorough analyses of real data sets.

Survival And Event History Analysis

Author: Odd Aalen
Publisher: Springer Science & Business Media
ISBN: 038768560X
Size: 59.25 MB
Format: PDF, ePub
View: 967
Download Read Online
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.

Survival Analysis

Author: John P. Klein
Publisher: Springer Science & Business Media
ISBN: 1475727283
Size: 39.20 MB
Format: PDF, Docs
View: 6935
Download Read Online
Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.

Applied Survival Analysis

Author: David W. Hosmer, Jr.
Publisher: John Wiley & Sons
ISBN: 1118211588
Size: 57.37 MB
Format: PDF, Docs
View: 6831
Download Read Online
THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.

Bayesian Survival Analysis

Author: Joseph G. Ibrahim
Publisher: Springer Science & Business Media
ISBN: 1475734476
Size: 72.97 MB
Format: PDF, Kindle
View: 2210
Download Read Online
Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.

Statistical And Methodological Aspects Of Oral Health Research

Author: Emmanuel Lesaffre
Publisher: John Wiley & Sons
ISBN: 9780470744123
Size: 29.63 MB
Format: PDF
View: 6665
Download Read Online
Statistical and Methodological Aspects of Oral Health Research provides oral health researchers with an overview of the methodological aspects that are important in planning, conducting and analyzing their research projects whilst also providing biostatisticians with an idea of the statistical problems that arise when tackling oral health research questions. This collection presents critical reflections on oral health research and offers advice on practical aspects of setting up research whilst introducing the reader to basic as well as advanced statistical methodology. Features: An introduction to research methodology and an exposition of the state of the art. A variety of examples from oral health research. Contributions from well-known oral health researchers, epidemiologists and biostatisticians, all of whom have rich experience in this area. Recent developments in statistical methodology prompted by a variety of dental applications. Presenting both an introduction to research methodology and an exposition of the latest advances in oral health research, this book will appeal both beginning and experienced oral health researchers as well as biostatisticians and epidemiologists.