The Structure Of Complex Lie Groups

Author: Dong Hoon Lee
Publisher: CRC Press
ISBN: 1420035452
Size: 79.80 MB
Format: PDF, ePub, Mobi
View: 4524
Download Read Online
Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects. The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts introduced via an almost complex structure on a real Lie group. It then moves to the theory of representative functions of Lie groups- used as a primary tool in subsequent chapters-and discusses the extension problem of representations that is essential for studying the structure of complex Lie groups. This is followed by a discourse on complex analytic groups that carry the structure of affine algebraic groups compatible with their analytic group structure. The author then uses the results of his earlier discussions to determine the observability of subgroups of complex Lie groups. The differences between complex algebraic groups and complex Lie groups are sometimes subtle and it can be difficult to know which aspects of algebraic group theory apply and which must be modified. The Structure of Complex Lie Groups helps clarify those distinctions. Clearly written and well organized, this unique work presents material not found in other books on Lie groups and serves as an outstanding complement to them.

Complex Analysis And Geometry

Author: Vincenzo Ancona
Publisher: CRC Press
ISBN: 9780582292765
Size: 71.48 MB
Format: PDF, ePub
View: 943
Download Read Online
Based on two conferences held in Trento, Italy, this volume contains 13 research papers and two survey papers on complex analysis and complex algebraic geometry. The main topics addressed by these leading researchers include: Mori theory polynomial hull vector bundles q-convexity Lie groups and actions on complex spaces hypercomplex structures pseudoconvex domains projective varieties Peer-reviewed and extensively referenced, Complex Analysis and Geometry contains recent advances and important research results. It also details several problems that remain open, the resolution of which could further advance the field.

Further Advances In Twistor Theory

Author: L.J. Mason
Publisher: CRC Press
ISBN: 9780582004658
Size: 17.26 MB
Format: PDF, ePub, Docs
View: 4432
Download Read Online
Twistor theory is the remarkable mathematical framework that was discovered by Roger Penrose in the course of research into gravitation and quantum theory. It have since developed into a broad, many-faceted programme that attempts to resolve basic problems in physics by encoding the structure of physical fields and indeed space-time itself into the complex analytic geometry of twistor space. Twistor theory has important applications in diverse areas of mathematics and mathematical physics. These include powerful techniques for the solution of nonlinear equations, in particular the self-duality equations both for the Yang-Mills and the Einstein equations, new approaches to the representation theory of Lie groups, and the quasi-local definition of mass in general relativity, to name but a few. This volume and its companions comprise an abundance of new material, including an extensive collection of Twistor Newsletter articles written over a period of 15 years. These trace the development of the twistor programme and its applications over that period and offer an overview on the current status of various aspects of that programme. The articles have been written in an informal and easy-to-read style and have been arranged by the editors into chapter supplemented by detailed introductions, making each volume self-contained and accessible to graduate students and nonspecialists from other fields. Volume II explores applications of flat twistor space to nonlinear problems. It contains articles on integrable or soluble nonlinear equations, conformal differential geometry, various aspects of general relativity, and the development of Penrose's quasi-local mass construction.

Symmetry And Quantum Mechanics

Author: Scott Corry
Publisher: CRC Press
ISBN: 1315354608
Size: 33.82 MB
Format: PDF, ePub, Mobi
View: 6040
Download Read Online
Structured as a dialogue between a mathematician and a physicist, Symmetry and Quantum Mechanics unites the mathematical topics of this field into a compelling and physically-motivated narrative that focuses on the central role of symmetry. Aimed at advanced undergraduate and beginning graduate students in mathematics with only a minimal background in physics, this title is also useful to physicists seeking a mathematical introduction to the subject. Part I focuses on spin, and covers such topics as Lie groups and algebras, while part II offers an account of position and momentum in the context of the representation theory of the Heisenberg group, along the way providing an informal discussion of fundamental concepts from analysis such as self-adjoint operators on Hilbert space and the Stone-von Neumann Theorem. Mathematical theory is applied to physical examples such as spin-precession in a magnetic field, the harmonic oscillator, the infinite spherical well, and the hydrogen atom.

Submanifolds And Holonomy Second Edition

Author: Jurgen Berndt
Publisher: CRC Press
ISBN: 1482245167
Size: 20.69 MB
Format: PDF, ePub
View: 3488
Download Read Online
Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor. New to the Second Edition New chapter on normal holonomy of complex submanifolds New chapter on the Berger–Simons holonomy theorem New chapter on the skew-torsion holonomy system New chapter on polar actions on symmetric spaces of compact type New chapter on polar actions on symmetric spaces of noncompact type New section on the existence of slices and principal orbits for isometric actions New subsection on maximal totally geodesic submanifolds New subsection on the index of symmetric spaces The book uses the reduction of codimension, Moore’s lemma for local splitting, and the normal holonomy theorem to address the geometry of submanifolds. It presents a unified treatment of new proofs and main results of homogeneous submanifolds, isoparametric submanifolds, and their generalizations to Riemannian manifolds, particularly Riemannian symmetric spaces.

Smooth Homogeneous Structures In Operator Theory

Author: Daniel Beltita
Publisher: CRC Press
ISBN: 9781420034806
Size: 22.36 MB
Format: PDF, ePub, Docs
View: 4805
Download Read Online
Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research. Requiring only a moderate familiarity with functional analysis and general topology, the author begins with an introduction to infinite dimensional Lie theory with emphasis on the relationship between Lie groups and Lie algebras. A detailed examination of smooth homogeneous spaces follows. This study is illustrated by familiar examples from operator theory and develops methods that allow endowing such spaces with structures of complex manifolds. The final section of the book explores equivariant monotone operators and Kähler structures. It examines certain symmetry properties of abstract reproducing kernels and arrives at a very general version of the construction of restricted Grassmann manifolds from the theory of loop groups. The author provides complete arguments for nearly every result. An extensive list of references and bibliographic notes provide a clear picture of the applicability of geometric methods in functional analysis, and the open questions presented throughout the text highlight interesting new research opportunities. Daniel Beltitâ is a Principal Researcher at the Institute of Mathematics "Simion Stoilow" of the Romanian Academy, Bucharest, Romania.

Submanifolds And Holonomy

Author: Jurgen Berndt
Publisher: CRC Press
ISBN: 0203499158
Size: 15.68 MB
Format: PDF, Mobi
View: 1601
Download Read Online
With special emphasis on new techniques based on the holonomy of the normal connection, this book provides a modern, self-contained introduction to submanifold geometry. It offers a thorough survey of these techniques and their applications and presents a framework for various recent results to date found only in scattered research papers. The treatment introduces all the basics of the subject, and along with some classical results and hard-to-find proofs, presents new proofs of several recent results. Appendices furnish the necessary background material, exercises give readers practice in using the techniques, and discussion of open problems stimulates readers' interest in the field.

Non Associative Algebra And Its Applications

Author: Lev Sabinin
Publisher: CRC Press
ISBN: 9780824726690
Size: 39.28 MB
Format: PDF
View: 1063
Download Read Online
With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences. This book covers material such as Jordan superalgebras, nonassociative deformations, nonassociative generalization of Hopf algebras, the structure of free algebras, derivations of Lie algebras, and the identities of Albert algebra. It also includes applications of smooth quasigroups and loops to differential geometry and relativity.