X Ray Scattering From Semiconductors And Other Materials

Author: Paul F. Fewster
Publisher: World Scientific
ISBN: 9814436933
Size: 13.13 MB
Format: PDF, Mobi
View: 222
Download Read Online
This third edition has been extended considerably to incorporate more information on instrument influences on the interpretation of X-ray scattering profiles and reciprocal space maps. Another significant inclusion is on the scattering from powder samples, covering a new theoretical approach that explains features that conventional theory cannot. The new edition includes some of the latest methodologies and theoretical treatments, including the latest thinking on dynamical theory and diffuse scattering. Recent advances in detectors also present new opportunities for rapid data collection and some very different approaches in data collection techniques; the possibilities associated with these advances will be included. This edition should be of interest to those who use X-ray scattering to understand more about their samples, so that they can make a better judgment of the parameter and confidence levels in their analyses, and how the combination of instrument, sample and detection should be considered as a whole to ensure this.

X Ray Scattering From Semiconductors And Other Materials 3rd Edition

Author: Fewster Paul F
Publisher: World Scientific
ISBN: 9814436941
Size: 62.55 MB
Format: PDF
View: 6204
Download Read Online
This third edition has been extended considerably to incorporate more information on instrument influences on the interpretation of X-ray scattering profiles and reciprocal space maps. Another significant inclusion is on the scattering from powder samples, covering a new theoretical approach that explains features that conventional theory cannot. The new edition includes some of the latest methodologies and theoretical treatments, including the latest thinking on dynamical theory and diffuse scattering. Recent advances in detectors also present new opportunities for rapid data collection and some very different approaches in data collection techniques; the possibilities associated with these advances will be included.This edition should be of interest to those who use X-ray scattering to understand more about their samples, so that they can make a better judgment of the parameter and confidence levels in their analyses, and how the combination of instrument, sample and detection should be considered as a whole to ensure this.

X Ray Scattering From Semiconductors

Author: Paul F Fewster
Publisher: World Scientific
ISBN: 178326098X
Size: 71.20 MB
Format: PDF
View: 6100
Download Read Online
This book presents a practical guide to the analysis of materials and includes a thorough description of the underlying theories and instrumental aberrations caused by real experiments. The main emphasis concerns the analysis of thin films and multilayers, primarily semiconductors, although the techniques are very general. Semiconductors can be very perfect composite crystals and therefore their study can lead to the largest volume of information, since X-ray scattering can assess the deviation from perfection. The description is intentionally conceptual so that the reader can grasp the real processes involved. In this way the analysis becomes significantly easier, making the reader aware of misleading artifacts and assisting in the determination of a more complete and reliable analysis. The theory of scattering is very important and is covered in such a way that the assumptions are clear. Greatest emphasis is placed on the dynamical diffraction theory including new developments extending its applicability to reciprocal space mapping and modelling samples with relaxed and distorted interfaces. A practical guide to the measurement of diffraction patterns, including the smearing effects introduced to the measurement, is also presented. Contents:An Introduction to Semiconductor MaterialsAn Introduction to X-Ray ScatteringEquipment for Measuring Diffraction PatternsA Practical Guide to the Evaluation of Structural Parameters Readership: Postgraduate researchers in crystallography, materials science, semiconductors and physics. Keywords:X-Ray;Diffraction;Scattering;Semiconductors;Rocking Curve;Reciprocal Space;Topography;High Resolution;Thin Films;Reflectometry;Dynamical Theory

X Ray Scattering From Semiconductors

Author: Paul F. Fewster
Publisher: OECD Publishing
ISBN: 9781860941597
Size: 43.59 MB
Format: PDF
View: 1014
Download Read Online
An introduction to semiconductor materials. Introduction to X- ray scattering. Equipment for measuring diffraction patterns.

High Resolution X Ray Scattering

Author: Ullrich Pietsch
Publisher: Springer Science & Business Media
ISBN: 1475740506
Size: 78.70 MB
Format: PDF
View: 6972
Download Read Online
During the last 20 years interest in high-resolution x-ray diffractometry and reflectivity has grown as a result of the development of the semiconductor industry and the increasing interest in material research of thin layers of magnetic, organic, and other materials. For example, optoelectronics requires a subsequent epitaxy of thin layers of different semiconductor materials. Here, the individuallayer thicknesses are scaled down to a few atomic layers in order to exploit quantum effects. For reasons of electronic and optical confinement, these thin layers are embedded within much thicker cladding layers or stacks of multilayers of slightly different chemical composition. It is evident that the interface quality of those quantum weHs is quite important for the function of devices. Thin metallic layers often show magnetic properties which do not ap pear for thick layers or in bulk material. The investigation of the mutual interaction of magnetic and non-magnetic layers leads to the discovery of colossal magnetoresistance, for example. This property is strongly related to the thickness and interface roughness of covered layers.

Characterization Of Semiconductor Heterostructures And Nanostructures

Author: Giovanni Agostini
Publisher: Newnes
ISBN: 044459549X
Size: 65.16 MB
Format: PDF, ePub, Mobi
View: 7490
Download Read Online
Characterization of Semiconductor Heterostructures and Nanostructures is structured so that each chapter is devoted to a specific characterization technique used in the understanding of the properties (structural, physical, chemical, electrical etc..) of semiconductor quantum wells and superlattices. An additional chapter is devoted to ab initio modeling. The book has two basic aims. The first is educational, providing the basic concepts of each of the selected techniques with an approach understandable by advanced students in Physics, Chemistry, Material Science, Engineering, Nanotechnology. The second aim is to provide a selected set of examples from the recent literature of the TOP results obtained with the specific technique in understanding the properties of semiconductor heterostructures and nanostructures. Each chapter has this double structure: the first part devoted to explain the basic concepts, and the second to the discussion of the most peculiar and innovative examples. The topic of quantum wells, wires and dots should be seen as a pretext of applying top level characterization techniques in understanding the structural, electronic etc properties of matter at the nanometer (and even sub-nanometer) scale. In this respect it is an essential reference in the much broader, and extremely hot, field of Nanotechnology. Comprehensive collection of the most powerful characterization techniques for semiconductors heterostructures and nanostructures Most of the chapters are authored by scientists that are world-wide among the top-ten in publication ranking of the specific field Each chapter starts with a didactic introduction on the technique The second part of each chapters deals with a selection of top examples highlighting the power of the specific technique to analyse the properties of semiconductors heterostructures and nanostructures

X Ray Metrology In Semiconductor Manufacturing

Author: D. Keith Bowen
Publisher: CRC Press
ISBN: 1420005650
Size: 46.66 MB
Format: PDF, Docs
View: 7315
Download Read Online
The scales involved in modern semiconductor manufacturing and microelectronics continue to plunge downward. Effective and accurate characterization of materials with thicknesses below a few nanometers can be achieved using x-rays. While many books are available on the theory behind x-ray metrology (XRM), X-Ray Metrology in Semiconductor Manufacturing is the first book to focus on the practical aspects of the technology and its application in device fabrication and solving new materials problems. Following a general overview of the field, the first section of the book is organized by application and outlines the techniques that are best suited to each. The next section delves into the techniques and theory behind the applications, such as specular x-ray reflectivity, diffraction imaging, and defect mapping. Finally, the third section provides technological details of each technique, answering questions commonly encountered in practice. The authors supply real examples from the semiconductor and magnetic recording industries as well as more than 150 clearly drawn figures to illustrate the discussion. They also summarize the principles and key information about each method with inset boxes found throughout the text. Written by world leaders in the field, X-Ray Metrology in Semiconductor Manufacturing provides real solutions with a focus on accuracy, repeatability, and throughput.

Diffuse Scattering And The Fundamental Properties Of Materials

Author: Rozaliya I. Barabash
Publisher: Momentum Press
ISBN: 1606500007
Size: 17.60 MB
Format: PDF, Docs
View: 121
Download Read Online
Beginning with a concise review of the physics and chemistry of polymers and their structure and morphology, this book goes on to describe and explain the common methods of characterizing polymers, including optical microscopy, scanning electron microscopy and transmission electron microscopy, among others. Also covered are the characterization and modification of such surface properties as adhesion, wetting, tribology, and surface thermodynamics.

Diffraction From Materials

Author: Lyle Schwartz
Publisher: Springer Science & Business Media
ISBN: 3642829279
Size: 11.36 MB
Format: PDF, Docs
View: 5295
Download Read Online
The atomic arrangements in condensed matter play an ever increasing role in many areas of science and technology - Materials Science and Engineering, Chemistry, Physics, Geology, Biology and Electrical, Civil, Mechanidtl and Chemical Engineering. Exciting discoveries in these fields in this century often stemmed from studies of these arrangements using diffraction: the structure and functions of DNA and other biological molecules, the configuration of polymer chains, the crystalline nature of metals and their imperfections, semiconductors and insulators, and -the links between their structures, their defects and material properties, and the interaction between materials and the environment. The broad, interdisciplinary character of diffraction studies makes them particularly exciting. With new tools such as the high-resolution electron microscope, new detectors, new techniques (such as EXAFS and glancing angle diffraction) and the new sources, the horizons of this field greatly expanded in the 1950's and 60's. Pulsed neutron sources and high intensity storage rings that came on the scene in the late 70's have opened up possibilities for new study to such vast horizons that it is hard to sit here writing this - there's so much to be done! Within the walls bounding each field of science or engineering, diffraction and structure is only one specialty. It is too easy for this topic to be developed in such a narrow way that sight is lost of the basic principles and broad possibilities.